[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparison of Bio-Inspired Methods with Parameter Adaptation Through Interval Type-2 Fuzzy Logic

  • Chapter
  • First Online:
Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 749))

  • 1268 Accesses

Abstract

In the development of this paper we perform a comparison with two bio-inspired methods, Ant Colony Optimization (ACO) and Gravitational Search Algorithm (GSA). Each one of these methods use our methodology for parameter adaptation using interval type-2 fuzzy logic, where based on some metrics about the algorithm, like the percentage of iterations elapsed or the diversity of the population, we try to control their behavior and therefore control their abilities to perform a global or a local search. To test these methods two problems were used in which a fuzzy controller is optimized to minimize the error in the simulation with nonlinear complex plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Amador-Angulo, O. Castillo, Statistical analysis of Type-1 and Interval Type-2 Fuzzy Logic in dynamic parameter adaptation of the BCO, in 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), Atlantis Press, June 2015

    Google Scholar 

  2. M. Dorigo, Optimization, learning and natural algorithms, Ph.D. Thesis, Dipartimento di Elettronica, Politechico di Milano, Italy, 1992

    Google Scholar 

  3. M. Guerrero, O. Castillo, M. Garcia, Fuzzy dynamic parameters adaptation in the Cuckoo Search Algorithm using fuzzy logic, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 441–448

    Google Scholar 

  4. L. Hongbo, A. Ajith, A fuzzy adaptive turbulent particle swarm optimization. Int. J. Innov. Comput. Appl. 1(1), 39–47 (2007)

    Article  Google Scholar 

  5. P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, J. Garcia, Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Exp. Syst. Appl. 40(8), 3196–3206 (2013)

    Article  Google Scholar 

  6. H. Neyoy, O. Castillo, J. Soria, in Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in TSP Problems. Studies in Computational Intelligence vol. 451 (Springer, Berlin, 2012), pp. 259–271

    Google Scholar 

  7. F. Olivas, F. Valdez, O. Castillo, P. Melin, Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)

    Article  Google Scholar 

  8. F. Olivas, F. Valdez, O. Castillo, C. Gonzalez, G. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. (2016)

    Google Scholar 

  9. F. Olivas, F. Valdez, O. Castillo, P. Melin, Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Eng. Appl. Artif. Intell. (2017, Under review)

    Google Scholar 

  10. P. Ochoa, O. Castillo, J. Soria, Differential evolution with dynamic adaptation of parameters for the optimization of fuzzy controllers, in Recent Advances on Hybrid Approaches for Designing Intelligent Systems (Springer International Publishing, 2014), pp. 275–288

    Google Scholar 

  11. C. Peraza, F. Valdez, O. Castillo, An improved harmony search algorithm using fuzzy logic for the optimization of mathematical functions, in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization (Springer International Publishing, 2015), pp. 605–615

    Google Scholar 

  12. J. Perez, F. Valdez, O. Castillo, P. Melin, C. Gonzalez, G. Martinez, Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Comput. 1–19 (2016)

    Google Scholar 

  13. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248. (2009)

    Google Scholar 

  14. Y. Shi, R. Eberhart, Fuzzy adaptive particle swarm optimization, in Proceeding of IEEE International Conference on Evolutionary Computation, Seoul, Korea (IEEE Service Center, Piscataway, NJ, 2001), pp. 101–106

    Google Scholar 

  15. C. Solano-Aragon, O. Castillo, Optimization of benchmark mathematical functions using the firefly algorithm with dynamic parameters, in Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics (Springer International Publishing, 2015), pp. 81–89

    Google Scholar 

  16. A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in 2013 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, June 2013), (pp. 1068–1074)

    Google Scholar 

  17. N. Taher, A. Ehsan, J. Masoud, A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for distribution feeder reconfiguration. Energy Convers. Manag. 54, 7–16 (2012)

    Article  Google Scholar 

  18. B. Wang, G. Liang, W. Chan Lin, D. Yunlong, A new kind of fuzzy particle swarm optimization fuzzy_PSO algorithm, in 1st International Symposium on Systems and Control in Aerospace and Astronautics, ISSCAA 2006, pp 309–311 (2006)

    Google Scholar 

  19. L. Zadeh, Fuzzy sets. Inf. Control 8 (1965)

    Google Scholar 

  20. Zadeh, L. Fuzzy logic. IEEE Comput., 83–92 (1965)

    Google Scholar 

  21. L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olivas, F., Valdez, F., Castillo, O. (2018). Comparison of Bio-Inspired Methods with Parameter Adaptation Through Interval Type-2 Fuzzy Logic. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71008-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71007-5

  • Online ISBN: 978-3-319-71008-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics