Abstract
In the development of this paper we perform a comparison with two bio-inspired methods, Ant Colony Optimization (ACO) and Gravitational Search Algorithm (GSA). Each one of these methods use our methodology for parameter adaptation using interval type-2 fuzzy logic, where based on some metrics about the algorithm, like the percentage of iterations elapsed or the diversity of the population, we try to control their behavior and therefore control their abilities to perform a global or a local search. To test these methods two problems were used in which a fuzzy controller is optimized to minimize the error in the simulation with nonlinear complex plants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
L. Amador-Angulo, O. Castillo, Statistical analysis of Type-1 and Interval Type-2 Fuzzy Logic in dynamic parameter adaptation of the BCO, in 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), Atlantis Press, June 2015
M. Dorigo, Optimization, learning and natural algorithms, Ph.D. Thesis, Dipartimento di Elettronica, Politechico di Milano, Italy, 1992
M. Guerrero, O. Castillo, M. Garcia, Fuzzy dynamic parameters adaptation in the Cuckoo Search Algorithm using fuzzy logic, in 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, May 2015), pp. 441–448
L. Hongbo, A. Ajith, A fuzzy adaptive turbulent particle swarm optimization. Int. J. Innov. Comput. Appl. 1(1), 39–47 (2007)
P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, J. Garcia, Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Exp. Syst. Appl. 40(8), 3196–3206 (2013)
H. Neyoy, O. Castillo, J. Soria, in Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in TSP Problems. Studies in Computational Intelligence vol. 451 (Springer, Berlin, 2012), pp. 259–271
F. Olivas, F. Valdez, O. Castillo, P. Melin, Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)
F. Olivas, F. Valdez, O. Castillo, C. Gonzalez, G. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. (2016)
F. Olivas, F. Valdez, O. Castillo, P. Melin, Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Eng. Appl. Artif. Intell. (2017, Under review)
P. Ochoa, O. Castillo, J. Soria, Differential evolution with dynamic adaptation of parameters for the optimization of fuzzy controllers, in Recent Advances on Hybrid Approaches for Designing Intelligent Systems (Springer International Publishing, 2014), pp. 275–288
C. Peraza, F. Valdez, O. Castillo, An improved harmony search algorithm using fuzzy logic for the optimization of mathematical functions, in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization (Springer International Publishing, 2015), pp. 605–615
J. Perez, F. Valdez, O. Castillo, P. Melin, C. Gonzalez, G. Martinez, Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Comput. 1–19 (2016)
E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248. (2009)
Y. Shi, R. Eberhart, Fuzzy adaptive particle swarm optimization, in Proceeding of IEEE International Conference on Evolutionary Computation, Seoul, Korea (IEEE Service Center, Piscataway, NJ, 2001), pp. 101–106
C. Solano-Aragon, O. Castillo, Optimization of benchmark mathematical functions using the firefly algorithm with dynamic parameters, in Fuzzy Logic Augmentation of Nature-Inspired Optimization Metaheuristics (Springer International Publishing, 2015), pp. 81–89
A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in 2013 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, June 2013), (pp. 1068–1074)
N. Taher, A. Ehsan, J. Masoud, A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for distribution feeder reconfiguration. Energy Convers. Manag. 54, 7–16 (2012)
B. Wang, G. Liang, W. Chan Lin, D. Yunlong, A new kind of fuzzy particle swarm optimization fuzzy_PSO algorithm, in 1st International Symposium on Systems and Control in Aerospace and Astronautics, ISSCAA 2006, pp 309–311 (2006)
L. Zadeh, Fuzzy sets. Inf. Control 8 (1965)
Zadeh, L. Fuzzy logic. IEEE Comput., 83–92 (1965)
L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Olivas, F., Valdez, F., Castillo, O. (2018). Comparison of Bio-Inspired Methods with Parameter Adaptation Through Interval Type-2 Fuzzy Logic. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-71008-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71007-5
Online ISBN: 978-3-319-71008-2
eBook Packages: EngineeringEngineering (R0)