[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tactile-Based In-Hand Object Pose Estimation

  • Conference paper
  • First Online:
ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 694))

Included in the following conference series:

Abstract

This paper presents a method to estimate the pose of an object inside a robotic hand by exploiting contact and joint position information. Once an initial visual estimation is provided, a Bootstrap Particle Filter is used to evaluate multiple hypothesis for the object pose. The function used to score the hypothesis considers feasibility and physical meaning of the contacts between the object and the hand. The method provides a good estimation of in-hand pose for different 3D objects.

This work has received funding from the Spanish Ministry of Economy, Industry and Competitiveness under the projects DPI2013-47944-C4-3-R and DPI2016-80077-R, and the RoboCity2030-III-CM project, stage III, S2013/MIT-2748), cofunded by “Programas de Actividades I+D en la Comunidad de Madrid”, and by Structural Funds of the EU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Macura, Z., Cangelosi, A., Ellis, R., Bugmann, D., Fischer, M., Myachykov, A.: A cognitive robotic model of grasping. In: Proceedings of International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, pp. 89–96 (2009)

    Google Scholar 

  2. Rothwell, J., Traub, M., Day, B., Obeso, J., Thomas, P., Marsden, C.: Manual motor performance in a deafferented man. Brain 105, 515–542 (1982)

    Article  Google Scholar 

  3. Bimbo, J., Seneviratne, L., Althoefer, K., Liu, H.: Combining touch and vision for the estimation of an object’s pose during manipulation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4021–4026 (2013)

    Google Scholar 

  4. Haidacher, S., Hirzinger, G.: Estimating finger contact location and object pose from contact measurements in 3-D grasping. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1805–1810 (2003)

    Google Scholar 

  5. Chalon, M., Reinecke, J., Pfanne, M.: Online in-hand object localization. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2977–2984 (2013)

    Google Scholar 

  6. Koval, M., Dogar, M., Pollard, N., Srinivasa, S.: Pose estimation for contact manipulation with manifold particle filters. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4541–4548 (2013)

    Google Scholar 

  7. Aggarwal, A., Kirchner, F.: Object recognition and localization: the role of tactile sensors. Sensors 14, 3227–3266 (2014)

    Article  Google Scholar 

  8. Hebert, P., Hudson, N., Ma, J., Burdick, J.: Fusion of stereo vision, force-torque, and joint sensors for estimation of in-hand object location. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 5935–5941 (2011)

    Google Scholar 

  9. Bimbo, J., Kormushev, P., Althoefer, K., Liu, H.: Global estimation of an object’s pose using tactile sensing. Adv. Rob. Syst. 29, 37–41 (2015)

    Google Scholar 

  10. Tenzer, Y., Jentoft, L., Howe, R.: The feel of MEMS barometers: inexpensive and easily customized tactile array sensors. IEEE Rob. Autom. Magaz. 21(3), 89–95 (2014)

    Article  Google Scholar 

  11. Kalman, R.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  12. Doucet, A., de Freitas, N., Gordon, N.: An Introduction to Sequential Monte Carlo Methods. Springer, New York (2001)

    Book  MATH  Google Scholar 

  13. Candy, J.: Bootstrap particle filtering. IEEE Signal Process. Mag. 24, 73–85 (2007)

    Article  Google Scholar 

  14. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Norwood (2004)

    MATH  Google Scholar 

  15. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.: The YCB object and model set: towards common benchmarks for manipulation research. In: Proceedings of IEEE International Conference on Advanced Robotics, pp. 510–517 (2015)

    Google Scholar 

  16. Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision proximity queries. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3859–3866 (2012)

    Google Scholar 

  17. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3400–3407 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Álvarez, D., Roa, M.A., Moreno, L. (2018). Tactile-Based In-Hand Object Pose Estimation. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-70836-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70836-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70835-5

  • Online ISBN: 978-3-319-70836-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics