[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Incremental Matrix Reordering for Similarity-Based Dynamic Data Sets

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10638))

Included in the following conference series:

  • 4759 Accesses

Abstract

Visualization methods are important to describe the underlying structure of a data set. When the data is not described as a vector of numerical values, a visualization can be obtained through the reordering of the corresponding similarity matrix. Although several methods of reordering exist, they all need the complete similarity matrix in memory. However, this is not possible for the analysis of dynamic data sets. The goal of this paper is to propose an original algorithm for the incremental reordering of a similarity matrix adapted to dynamic data sets. The proposed method is compared with state-of-the-art algorithms for static data-sets and applied to a dynamic data-set in order to demonstrate its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar-Joseph, Z., Gifford, D.K., Jaakkola, T.S.: Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17(Suppl. 1), S22–S29 (2001)

    Article  Google Scholar 

  2. Barnard, S.T., Pothen, A., Simon, H.D.: A spectral algorithm for envelope reduction of sparse matrices. In: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing 1993, pp. 493–502. ACM, New York (1993)

    Google Scholar 

  3. Behrisch, M., Bach, B., Riche, N.H., Schreck, T., Fekete, J.D.: Matrix reordering methods for table and network visualization. In: Computer Graphics Forum (2016)

    Google Scholar 

  4. Bezdek, J.C., Hathaway, R.J.: VAT: a tool for visual assessment of (cluster) tendency. In: International Joint Conference on Neural Networks (IJCNN), vol. 3, pp. 2225–2230 (2002)

    Google Scholar 

  5. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data visualization with multidimensional scaling. J. Comput. Graph. Stat. 17(2), 444–472 (2008)

    Article  MathSciNet  Google Scholar 

  6. Caraux, G., Pinloche, S.: Permutmatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21(7), 1280–1281 (2005)

    Article  Google Scholar 

  7. Chen, C.H., Hrdle, W., Unwin, A.: Handbook of Data Visualization, 1st edn. Springer-Verlag TELOS, Santa Clara (2008). doi:10.1007/978-3-540-33037-0

    Google Scholar 

  8. Conover, W.J.: Practical Nonparametric Statistics. Wiley, New York (1981)

    MATH  Google Scholar 

  9. Ding, C., He, X.: Linearized cluster assignment via spectral ordering. In: International Conference on Machine Learning, New York, NY, USA, p. 30 (2004)

    Google Scholar 

  10. Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman & Hall/CRC, Boca Raton (2010)

    Book  MATH  Google Scholar 

  11. Gruvaeus, G., Wainer, H.: Two additions to hierarchical cluster analysis. Br. J. Math. Stat. Psychol. 25(2), 200–206 (1972)

    Article  Google Scholar 

  12. Hahsler, M., Hornik, K., Buchta, C.: Getting things in order: an introduction to the R package seriation. J. Stat. Softw. 25(3), 1–34 (2008)

    Article  Google Scholar 

  13. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn., USA (2006)

    Google Scholar 

  14. Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Mining 3(2), 70–91 (2010)

    MathSciNet  Google Scholar 

  15. Mount, D.W.: Sequence and genome analysis. Bioinformatics: Cold Spring Harbour Laboratory Press: Cold Spring Harbour 2 (2004)

    Google Scholar 

  16. Rastin, P., Matei, B., Cabanes, G., El Baghdadi, I.: Signal-based autonomous clustering for relational data. In: International Joint Conference on Neural Networks, IJCNN 2017 (2017)

    Google Scholar 

  17. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Rastin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rastin, P., Matei, B. (2017). Incremental Matrix Reordering for Similarity-Based Dynamic Data Sets. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10638. Springer, Cham. https://doi.org/10.1007/978-3-319-70139-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70139-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70138-7

  • Online ISBN: 978-3-319-70139-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics