Abstract
In recent years, many efforts have been made to fuse different similarity measures for robust shape retrieval. In this paper, we firstly propose generalized mean first-passage time (GMFPT) that extends the mean first-passage time (MFPT) to the general form. Instead of focusing on the propagation of similarity information, GMFPT is introduced to improve pairwise shape distances, which denotes the mean time-steps for the transition from one state to a set of states. Through a semi-supervised learning framework, an iterative approach with a time-invariant state space is further proposed to fusing multiple distance measures, and the relative objects on the geodesic paths can be gradually and explicitly retrieved. The experimental results on different databases demonstrate that shape retrieval results can be effectively improved by the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: shape at its absolute scale. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2188–2203 (2008)
Bai, S., Bai, X.: Sparse contextual activation for efficient visual re-ranking. IEEE Trans. Image Process. 25(3), 1056–1069 (2016)
Bai, S., Sun, S., Bai, X., Zhang, Z., Tian, Q.: Smooth neighborhood structure mining on multiple affinity graphs with applications to context-sensitive similarity. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 592–608. Springer, Cham (2016). doi:10.1007/978-3-319-46475-6_37
Bai, X., Wang, B., Yao, C., Liu, W., Tu, Z.: Co-transduction for shape retrieval. IEEE Trans. Image Processing 21(5), 2747–2757 (2012)
Bai, X., Yang, X., Latecki, L.J., Liu, W., Tu, Z.: Learning context-sensitive shape similarity by graph transduction. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 861–874 (2010)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006)
Donoser, M., Bischof, H.: Diffusion processes for retrieval revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1320–1327 (2013)
Egozi, A., Keller, Y., Guterman, H.: Improving shape retrieval by spectral matching and meta similarity. IEEE Trans. Image Process. 19(5), 1319–1327 (2010)
Jiang, J., Wang, B., Tu, Z.: Unsupervised metric learning by self-smoothing operator. In: IEEE International Conference on Computer Vision, pp. 794–801 (2011)
Kontschieder, P., Donoser, M., Bischof, H.: Beyond pairwise shape similarity analysis. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5996, pp. 655–666. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12297-2_63
Latecki, L.J., Lakamper, R., Eckhardt, T.: Shape descriptors for non-rigid shapes with a single closed contour. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 424–429 (2000)
Li, H., Lu, H., Lin, Z., Shen, X., Price, B.: Inner and inter label propagation: salient object detection in the wild. IEEE Trans. Image Process.: Publ. IEEE Sig. Process. Soc. 24(10), 3176–86 (2015)
Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)
Luo, L., Shen, C., Zhang, C., van den Hengel, A.: Shape similarity analysis by self-tuning locally constrained mixed-diffusion. IEEE Trans. Multimedia 15(5), 1174–1183 (2013)
Guimarães Pedronette, D.C., Penatti, O.A.B., Torres, R.D.S.: Unsupervised manifold learning using reciprocal KNN graphs in image re-ranking and rank aggregation tasks. Image Vis. Comput. 32(2), 120–130 (2014)
Wang, B., Jiang, J., Wang, W., Zhou, Z.H., Tu, Z.: Unsupervised metric fusion by cross diffusion. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)
Wang, J., Li, Y., Bai, X., Zhang, Y., Wang, C., Tang, N.: Learning context-sensitive similarity by shortest path propagation. Pattern Recogn. 44(10C11), 2367–2374 (2011)
Yang, X., Bai, X., Latecki, L.J., Tu, Z.: Improving shape retrieval by learning graph transduction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 788–801. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_58
Yang, X., Prasad, L., Latecki, L.J.: Affinity learning with diffusion on tensor product graph. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 28–38 (2013)
Zhang, S., Yang, M., Cour, T., Yu, K., Metaxas, D.N.: Query specific rank fusion for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 803–815 (2015)
Zhou, Y., Bai, X., Liu, W., Latecki, L.J.: Similarity fusion for visual tracking. Int. J. Comput. Vis. 118(3), 337–363 (2016)
Acknowledgement
This research is supported by the project (DUT14RC(3)128) of Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zheng, D., Liu, W., Wang, H. (2017). Improving Shape Retrieval by Fusing Generalized Mean First-Passage Time. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-70093-9_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70092-2
Online ISBN: 978-3-319-70093-9
eBook Packages: Computer ScienceComputer Science (R0)