[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Shape Retrieval by Fusing Generalized Mean First-Passage Time

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

In recent years, many efforts have been made to fuse different similarity measures for robust shape retrieval. In this paper, we firstly propose generalized mean first-passage time (GMFPT) that extends the mean first-passage time (MFPT) to the general form. Instead of focusing on the propagation of similarity information, GMFPT is introduced to improve pairwise shape distances, which denotes the mean time-steps for the transition from one state to a set of states. Through a semi-supervised learning framework, an iterative approach with a time-invariant state space is further proposed to fusing multiple distance measures, and the relative objects on the geodesic paths can be gradually and explicitly retrieved. The experimental results on different databases demonstrate that shape retrieval results can be effectively improved by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: shape at its absolute scale. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2188–2203 (2008)

    Article  Google Scholar 

  2. Bai, S., Bai, X.: Sparse contextual activation for efficient visual re-ranking. IEEE Trans. Image Process. 25(3), 1056–1069 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bai, S., Sun, S., Bai, X., Zhang, Z., Tian, Q.: Smooth neighborhood structure mining on multiple affinity graphs with applications to context-sensitive similarity. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 592–608. Springer, Cham (2016). doi:10.1007/978-3-319-46475-6_37

    Chapter  Google Scholar 

  4. Bai, X., Wang, B., Yao, C., Liu, W., Tu, Z.: Co-transduction for shape retrieval. IEEE Trans. Image Processing 21(5), 2747–2757 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, X., Yang, X., Latecki, L.J., Liu, W., Tu, Z.: Learning context-sensitive shape similarity by graph transduction. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 861–874 (2010)

    Article  Google Scholar 

  6. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  7. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Donoser, M., Bischof, H.: Diffusion processes for retrieval revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1320–1327 (2013)

    Google Scholar 

  9. Egozi, A., Keller, Y., Guterman, H.: Improving shape retrieval by spectral matching and meta similarity. IEEE Trans. Image Process. 19(5), 1319–1327 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jiang, J., Wang, B., Tu, Z.: Unsupervised metric learning by self-smoothing operator. In: IEEE International Conference on Computer Vision, pp. 794–801 (2011)

    Google Scholar 

  11. Kontschieder, P., Donoser, M., Bischof, H.: Beyond pairwise shape similarity analysis. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5996, pp. 655–666. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12297-2_63

    Chapter  Google Scholar 

  12. Latecki, L.J., Lakamper, R., Eckhardt, T.: Shape descriptors for non-rigid shapes with a single closed contour. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 424–429 (2000)

    Google Scholar 

  13. Li, H., Lu, H., Lin, Z., Shen, X., Price, B.: Inner and inter label propagation: salient object detection in the wild. IEEE Trans. Image Process.: Publ. IEEE Sig. Process. Soc. 24(10), 3176–86 (2015)

    Article  MathSciNet  Google Scholar 

  14. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  15. Luo, L., Shen, C., Zhang, C., van den Hengel, A.: Shape similarity analysis by self-tuning locally constrained mixed-diffusion. IEEE Trans. Multimedia 15(5), 1174–1183 (2013)

    Article  Google Scholar 

  16. Guimarães Pedronette, D.C., Penatti, O.A.B., Torres, R.D.S.: Unsupervised manifold learning using reciprocal KNN graphs in image re-ranking and rank aggregation tasks. Image Vis. Comput. 32(2), 120–130 (2014)

    Article  Google Scholar 

  17. Wang, B., Jiang, J., Wang, W., Zhou, Z.H., Tu, Z.: Unsupervised metric fusion by cross diffusion. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  18. Wang, J., Li, Y., Bai, X., Zhang, Y., Wang, C., Tang, N.: Learning context-sensitive similarity by shortest path propagation. Pattern Recogn. 44(10C11), 2367–2374 (2011)

    Article  Google Scholar 

  19. Yang, X., Bai, X., Latecki, L.J., Tu, Z.: Improving shape retrieval by learning graph transduction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 788–801. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_58

    Chapter  Google Scholar 

  20. Yang, X., Prasad, L., Latecki, L.J.: Affinity learning with diffusion on tensor product graph. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 28–38 (2013)

    Article  Google Scholar 

  21. Zhang, S., Yang, M., Cour, T., Yu, K., Metaxas, D.N.: Query specific rank fusion for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 803–815 (2015)

    Article  Google Scholar 

  22. Zhou, Y., Bai, X., Liu, W., Latecki, L.J.: Similarity fusion for visual tracking. Int. J. Comput. Vis. 118(3), 337–363 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research is supported by the project (DUT14RC(3)128) of Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danchen Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zheng, D., Liu, W., Wang, H. (2017). Improving Shape Retrieval by Fusing Generalized Mean First-Passage Time. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics