[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Correlation Filters with Adaptive Memories and Fusion for Visual Tracking

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10636))

Included in the following conference series:

  • 4488 Accesses

Abstract

Correlation filter-based trackers (CFTs) with multiple features have recently achieved competitive performance. However, such conventional CFTs simply combine these features via a fixed weight. Likewise, these trackers also utilize a fixed learning rate to update their models, which makes CFTs easily drift especially when the target suffers heavy occlusions. To tackle these issues, we propose a dynamic decision fusion strategy to automatically learn the weight from the corresponding response map, and accordingly, models are adaptively updated based on a reliability metric. Moreover, a novel kernelized scale estimation scheme is proposed by exploiting the nonlinear relationship over targets of different sizes. Qualitative and quantitative comparisons on the benchmark have demonstrated that the proposed approach significantly outperforms other state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust L1 tracker using accelerated proximal gradient approach. In: Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837 (2012)

    Google Scholar 

  2. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.: Staple: complementary learners for real-time tracking. In: Computer Vision and Pattern Recognition (CVPR), pp. 1401–1409 (2016)

    Google Scholar 

  3. Bibby, C., Reid, I.: Robust real-time visual tracking using pixel-wise posteriors. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 831–844. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4_61

    Chapter  Google Scholar 

  4. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Computer Vision and Pattern Recognition (CVPR), pp. 2544–2550 (2010)

    Google Scholar 

  5. Cai, B., Xu, X., Xing, X., Jia, K.: BIT: biologically inspired tracker. Trans. Image Process. (TIP) 25(3), 1327–1339 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Hong, Z., Tao, D.: An experimental survey on correlation filter-based tracking. Comput. Sci. 53(6025), 68–83 (2015)

    Google Scholar 

  7. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference (BMVC), pp. 65.1–65.11 (2014)

    Google Scholar 

  8. Danelljan, M., Khan, F.S., Felsberg, M., Weijer, J.V.D.: Adaptive color attributes for real-time visual tracking. In: Computer Vision and Pattern Recognition (CVPR), pp. 1090–1097 (2014)

    Google Scholar 

  9. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. Trans. Pattern Anal. Mach. Intell. (TPAMI) 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  10. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  11. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. Trans. Pattern Anal. Mach. Intell. (TPAMI) 37(3), 583–596 (2015)

    Article  Google Scholar 

  12. Li, Y., Zhu, J., Hoi, S.C.H.: Reliable patch trackers: robust visual tracking by exploiting reliable patches. In: Computer Vision and Pattern Recognition (CVPR), pp. 353–361 (2015)

    Google Scholar 

  13. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2002)

    Google Scholar 

  14. Wang, N., Wang, J., Yeung, D.Y.: Online robust non-negative dictionary learning for visual tracking. In: International Conference on Computer Vision (ICCV), pp. 657–664 (2013)

    Google Scholar 

  15. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418 (2013)

    Google Scholar 

  16. Zhang, K., Liu, Q., Wu, Y., Yang, M.H.: Robust visual tracking via convolutional networks without training. Trans. Image Process. (TIP) 25(4), 1779 (2016)

    MathSciNet  Google Scholar 

  17. Zhang, T., Liu, S., Ahuja, N., Yang, M.H., Ghanem, B.: Robust visual tracking via consistent low-rank sparse learning. Int. J. Comput. Vis. (IJCV) 111(2), 171–190 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61572315, Grant 6151101179, in part by 863 Plan of China under Grant 2015AA042308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Peng, C., Liu, F., Yang, H., Yang, J., Kasabov, N. (2017). Correlation Filters with Adaptive Memories and Fusion for Visual Tracking. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10636. Springer, Cham. https://doi.org/10.1007/978-3-319-70090-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70090-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70089-2

  • Online ISBN: 978-3-319-70090-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics