[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hybrid Deep Learning for Sentiment Polarity Determination of Arabic Microblogs

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10635))

Included in the following conference series:

  • 8788 Accesses

Abstract

In this study, we investigate various deep learning models based on convolutional neural networks (CNNs) and Long Short Term Memory (LSTM) recurrent neural networks for sentiment analysis of Arabic microblogs. Unlike English, the Arabic language has several specifics which complicate the process of feature extraction by traditional methods. We adopted a neural language model created at Google, known as word2vec, for vectorizing text. We then designed and evaluated several deep learning architectures using CNN and LSTM. The experiments were run on two publicly available Arabic tweets datasets. Promising results have been attained when combining LSTMs and compared favorably with most related work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://keras.io/optimizers/.

References

  1. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)

    Article  Google Scholar 

  2. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of Workshop at International Conference on Learning Representations (2013)

    Google Scholar 

  3. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  4. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  5. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (2014)

    Google Scholar 

  6. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: Learning semantic representations using convolutional neural networks for web search. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 373–374. ACM (2014)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Al Shboul, B., Al-Ayyoub, M., Jararweh, Y.: Multi-way sentiment classification of arabic reviews. In: Proceedings of the 6th IEEE International Conference on Information and Communication Systems (ICICS), pp. 206–211 (2015)

    Google Scholar 

  9. Brahimi, B., Touahria, M., Tari, A.: Data and text mining techniques for classifying arabic tweet polarity. J. Digital Inf. Manage. 14(1), 15 (2016)

    Google Scholar 

  10. Omar, N., Albared, M., Al-Moslmi, T., Al-Shabi, A.: A comparative study of feature selection and machine learning algorithms for arabic sentiment classification. In: Jaafar, A., Mohamad Ali, N., Mohd Noah, S.A., Smeaton, A.F., Bruza, P., Bakar, Z.A., Jamil, N., Sembok, T.M.T. (eds.) AIRS 2014. LNCS, vol. 8870, pp. 429–443. Springer, Cham (2014). doi:10.1007/978-3-319-12844-3_37

    Google Scholar 

  11. Mohammad, S., Salameh, M., Kiritchenko, S.: How translation alters sentiment. J. Artif. Intell. Res. 55, 95–130 (2016)

    MathSciNet  Google Scholar 

  12. Nabil, M., Aly, M., Atiya, A.F.: Astd: Arabic sentiment tweets dataset. In: Proceedings of the International Conference on Empirical Methods in Natural Language Processing, pp. 2515–2519 (2015)

    Google Scholar 

  13. ElSahar, H., El-Beltagy, S.R.: Building large arabic multi-domain resources for sentiment analysis. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 23–34. Springer, Cham (2015). doi:10.1007/978-3-319-18117-2_2

    Google Scholar 

  14. Khasawneh, R.T., Wahsheh, H.A., Alsmadi, I.M., AI-Kabi, M.N.: Arabic sentiment polarity identification using a hybrid approach. In: Proceedings of the 6th IEEE International Conference on Information and Communication Systems (ICICS), pp. 148–153 (2015)

    Google Scholar 

  15. Al-Azani, S., El-Alfy, E.S.M.: Using word embedding and ensemble learning for highly imbalanced data sentiment analysis in short arabic text. Procedia Comput. Sci. 109, 359–366 (2017)

    Article  Google Scholar 

  16. Duwairi, R., Ahmed, N.A., Al-Rifai, S.Y.: Detecting sentiment embedded in arabic social media-a lexicon-based approach. J. Intell. Fuzzy Syst. 29(1), 107–117 (2015)

    Article  Google Scholar 

  17. Al-Kabi, M.N., Al-Ayyoub, M.A., Alsmadi, I.M., Wahsheh, H.A.: A prototype for a standard arabic sentiment analysis corpus. Int. Arab J. Inf. Technol. (IAJIT) 13 (2016)

    Google Scholar 

  18. Rabab’ah, A.M., Al-Ayyoub, M., Jararweh, Y., Al-Kabi, M.N.: Evaluating sentistrength for arabic sentiment analysis. In: Proceedings of the 7th IEEE International Conference on Computer Science and Information Technology (CSIT), pp. 1–6 (2016)

    Google Scholar 

  19. Refaee, E., Rieser, V.: An Arabic twitter corpus for subjectivity and sentiment analysis. In: Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC), pp. 2268–2273 (2014)

    Google Scholar 

  20. Refaee, E., Rieser, V.: iLab-Edinburgh at SemEval-2016 Task 7: a hybrid approach for determining sentiment intensity of Arabic twitter phrases. In: Proceedings 10th International Workshop on Semantic Evaluation SemEval-2016, SemEval 2016, San Diego, California, June 2016

    Google Scholar 

  21. Al-Sallab, A.A., Baly, R., Badaro, G., Hajj, H., El-Hajj, W., Shaban, K.B.: Deep learning models for sentiment analysis in Arabic. In: ANLP Workshop, vol. 9 (2015)

    Google Scholar 

  22. Aziz, A., Tao, L.: Word embeddings for arabic sentiment analysis. In: IEEE International Conference on Big Data, vol. 7, pp. 3820–3825 (2016)

    Google Scholar 

  23. Dahou, A., Xiong, S., Zhou, J., Haddoud, M.H., Duan, P.: Word embeddings and convolutional neural network for arabic sentiment classification. In: Proceedings of the 26th International Conference on Computational Linguistics (COLING 2016), pp. 2418–2427 (2016)

    Google Scholar 

  24. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15825-4_10

    Chapter  Google Scholar 

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MATH  MathSciNet  Google Scholar 

  26. Chollet, F., et al.: Keras (2015), https://github.com/fchollet/keras

  27. Abdulla, N.A., Ahmed, N.A., Shehab, M.A., Al-Ayyoub, M.: Arabic sentiment analysis: lexicon-based and corpus-based. In: IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–6 (2013)

    Google Scholar 

  28. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgments

The authors would like to acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia, during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed M. El-Alfy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Al-Azani, S., El-Alfy, ES.M. (2017). Hybrid Deep Learning for Sentiment Polarity Determination of Arabic Microblogs. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70096-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70095-3

  • Online ISBN: 978-3-319-70096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics