Abstract
In this study, we investigate various deep learning models based on convolutional neural networks (CNNs) and Long Short Term Memory (LSTM) recurrent neural networks for sentiment analysis of Arabic microblogs. Unlike English, the Arabic language has several specifics which complicate the process of feature extraction by traditional methods. We adopted a neural language model created at Google, known as word2vec, for vectorizing text. We then designed and evaluated several deep learning architectures using CNN and LSTM. The experiments were run on two publicly available Arabic tweets datasets. Promising results have been attained when combining LSTMs and compared favorably with most related work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of Workshop at International Conference on Learning Representations (2013)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (2014)
Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: Learning semantic representations using convolutional neural networks for web search. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 373–374. ACM (2014)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Al Shboul, B., Al-Ayyoub, M., Jararweh, Y.: Multi-way sentiment classification of arabic reviews. In: Proceedings of the 6th IEEE International Conference on Information and Communication Systems (ICICS), pp. 206–211 (2015)
Brahimi, B., Touahria, M., Tari, A.: Data and text mining techniques for classifying arabic tweet polarity. J. Digital Inf. Manage. 14(1), 15 (2016)
Omar, N., Albared, M., Al-Moslmi, T., Al-Shabi, A.: A comparative study of feature selection and machine learning algorithms for arabic sentiment classification. In: Jaafar, A., Mohamad Ali, N., Mohd Noah, S.A., Smeaton, A.F., Bruza, P., Bakar, Z.A., Jamil, N., Sembok, T.M.T. (eds.) AIRS 2014. LNCS, vol. 8870, pp. 429–443. Springer, Cham (2014). doi:10.1007/978-3-319-12844-3_37
Mohammad, S., Salameh, M., Kiritchenko, S.: How translation alters sentiment. J. Artif. Intell. Res. 55, 95–130 (2016)
Nabil, M., Aly, M., Atiya, A.F.: Astd: Arabic sentiment tweets dataset. In: Proceedings of the International Conference on Empirical Methods in Natural Language Processing, pp. 2515–2519 (2015)
ElSahar, H., El-Beltagy, S.R.: Building large arabic multi-domain resources for sentiment analysis. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 23–34. Springer, Cham (2015). doi:10.1007/978-3-319-18117-2_2
Khasawneh, R.T., Wahsheh, H.A., Alsmadi, I.M., AI-Kabi, M.N.: Arabic sentiment polarity identification using a hybrid approach. In: Proceedings of the 6th IEEE International Conference on Information and Communication Systems (ICICS), pp. 148–153 (2015)
Al-Azani, S., El-Alfy, E.S.M.: Using word embedding and ensemble learning for highly imbalanced data sentiment analysis in short arabic text. Procedia Comput. Sci. 109, 359–366 (2017)
Duwairi, R., Ahmed, N.A., Al-Rifai, S.Y.: Detecting sentiment embedded in arabic social media-a lexicon-based approach. J. Intell. Fuzzy Syst. 29(1), 107–117 (2015)
Al-Kabi, M.N., Al-Ayyoub, M.A., Alsmadi, I.M., Wahsheh, H.A.: A prototype for a standard arabic sentiment analysis corpus. Int. Arab J. Inf. Technol. (IAJIT) 13 (2016)
Rabab’ah, A.M., Al-Ayyoub, M., Jararweh, Y., Al-Kabi, M.N.: Evaluating sentistrength for arabic sentiment analysis. In: Proceedings of the 7th IEEE International Conference on Computer Science and Information Technology (CSIT), pp. 1–6 (2016)
Refaee, E., Rieser, V.: An Arabic twitter corpus for subjectivity and sentiment analysis. In: Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC), pp. 2268–2273 (2014)
Refaee, E., Rieser, V.: iLab-Edinburgh at SemEval-2016 Task 7: a hybrid approach for determining sentiment intensity of Arabic twitter phrases. In: Proceedings 10th International Workshop on Semantic Evaluation SemEval-2016, SemEval 2016, San Diego, California, June 2016
Al-Sallab, A.A., Baly, R., Badaro, G., Hajj, H., El-Hajj, W., Shaban, K.B.: Deep learning models for sentiment analysis in Arabic. In: ANLP Workshop, vol. 9 (2015)
Aziz, A., Tao, L.: Word embeddings for arabic sentiment analysis. In: IEEE International Conference on Big Data, vol. 7, pp. 3820–3825 (2016)
Dahou, A., Xiong, S., Zhou, J., Haddoud, M.H., Duan, P.: Word embeddings and convolutional neural network for arabic sentiment classification. In: Proceedings of the 26th International Conference on Computational Linguistics (COLING 2016), pp. 2418–2427 (2016)
Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15825-4_10
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Chollet, F., et al.: Keras (2015), https://github.com/fchollet/keras
Abdulla, N.A., Ahmed, N.A., Shehab, M.A., Al-Ayyoub, M.: Arabic sentiment analysis: lexicon-based and corpus-based. In: IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–6 (2013)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Acknowledgments
The authors would like to acknowledge the support provided by the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia, during this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Al-Azani, S., El-Alfy, ES.M. (2017). Hybrid Deep Learning for Sentiment Polarity Determination of Arabic Microblogs. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-70096-0_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70095-3
Online ISBN: 978-3-319-70096-0
eBook Packages: Computer ScienceComputer Science (R0)