Abstract
We investigate dynamics of physical reservoir computing by numerical simulations. Our approach is based on nonlinear deterministic time series analysis such as Takens’ theorem and false nearest neighbor methods. We show that this approach is useful for efficient design and implementation of physical reservoir computing systems where only partial information of the reservoir state is accessible. We take nonlinear laser dynamics subject to time delay as physical reservoir and show that the size of physical reservoir can be estimated by these method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Appeltant, L., et al.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)
Kennel, M.B., et al.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)
Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16(3), 347–355 (1980)
Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)
Stark, J., et al.: Takens embedding theorems for forced and stochastic systems. J. Nonlinear Sci. 9, 255–332 (1999)
Takeda, S., Nakano, D., Yamane, T., Tanaka, G., Nakane, R., Hirose, A., Nakagawa, S.: Photonic reservoir computing based on laser dynamics with external feedback. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 222–230. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_24
Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Heidelberg (1981). doi:10.1007/BFb0091903
Uchida, A.: Optical Communication with Chaotic Lasers, Applications of Nonlinear Dynamics and Synchronization. Wiley-VCH, Weinheim (2012)
Vandoorne, K., et al.: Toward optical signal processing using photonics reservoir computing. Opt. Express 16(15), 11182–11192 (2008)
Yamane, T., Takeda, S., Nakano, D., Tanaka, G., Nakane, R., Nakagawa, S., Hirose, A.: Dynamics of reservoir computing at the edge of stability. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 205–212. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_22
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yamane, T. et al. (2017). Simulation Study of Physical Reservoir Computing by Nonlinear Deterministic Time Series Analysis. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_66
Download citation
DOI: https://doi.org/10.1007/978-3-319-70087-8_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70086-1
Online ISBN: 978-3-319-70087-8
eBook Packages: Computer ScienceComputer Science (R0)