[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simulation Study of Physical Reservoir Computing by Nonlinear Deterministic Time Series Analysis

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10634))

Included in the following conference series:

Abstract

We investigate dynamics of physical reservoir computing by numerical simulations. Our approach is based on nonlinear deterministic time series analysis such as Takens’ theorem and false nearest neighbor methods. We show that this approach is useful for efficient design and implementation of physical reservoir computing systems where only partial information of the reservoir state is accessible. We take nonlinear laser dynamics subject to time delay as physical reservoir and show that the size of physical reservoir can be estimated by these method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Appeltant, L., et al.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Article  Google Scholar 

  2. Kennel, M.B., et al.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  Google Scholar 

  3. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16(3), 347–355 (1980)

    Article  Google Scholar 

  4. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  5. Stark, J., et al.: Takens embedding theorems for forced and stochastic systems. J. Nonlinear Sci. 9, 255–332 (1999)

    Article  MathSciNet  Google Scholar 

  6. Takeda, S., Nakano, D., Yamane, T., Tanaka, G., Nakane, R., Hirose, A., Nakagawa, S.: Photonic reservoir computing based on laser dynamics with external feedback. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 222–230. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_24

    Chapter  Google Scholar 

  7. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Heidelberg (1981). doi:10.1007/BFb0091903

    Chapter  Google Scholar 

  8. Uchida, A.: Optical Communication with Chaotic Lasers, Applications of Nonlinear Dynamics and Synchronization. Wiley-VCH, Weinheim (2012)

    Book  MATH  Google Scholar 

  9. Vandoorne, K., et al.: Toward optical signal processing using photonics reservoir computing. Opt. Express 16(15), 11182–11192 (2008)

    Article  Google Scholar 

  10. Yamane, T., Takeda, S., Nakano, D., Tanaka, G., Nakane, R., Nakagawa, S., Hirose, A.: Dynamics of reservoir computing at the edge of stability. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 205–212. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Yamane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yamane, T. et al. (2017). Simulation Study of Physical Reservoir Computing by Nonlinear Deterministic Time Series Analysis. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70087-8_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70086-1

  • Online ISBN: 978-3-319-70087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics