[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing Asymmetric Median Tree of Two Trees via Better Bipartite Matching Algorithm

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10765))

Included in the following conference series:

Abstract

Maximum bipartite matching is a fundamental problem in computer science with many applications. The HopcroftKarp algorithm can find a maximum bipartite matching of a bipartite graph G in \(O(\sqrt{n} m)\) time where n and m are the number of nodes and edges, respectively, in the bipartite graph G. However, when G is dense (i.e., \(m=O(n^2)\)), the Hopcroft–Karp algorithm runs in \(O(n^{2.5})\) time.

In this paper, we consider a special case where the bipartite graph G is formed as a union of \(\ell \) complete bipartite graphs. In such case, even when G has \(O(n^2)\) edges, we show that a maximum bipartite graph can be found in \(O(\sqrt{n} (n + \ell ) \log n)\) time.

We also describe how to apply our solution to compute the asymmetric median tree of two phylogenetic trees. We improve the running time from \(O(n^{2.5})\) to \(O(n^{1.5} \log ^3 n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams III, E.N.: Consensus techniques and the comparison of taxonomic trees. Syst. Biol. 21(4), 390–397 (1972)

    Article  Google Scholar 

  2. Bremer, K.: Combinable component consensus. Cladistics 6(4), 369–372 (1990)

    Article  Google Scholar 

  3. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz, M.F., Lapointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsensus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 61, pp. 163–184. American Mathematical Society (2003)

    Google Scholar 

  4. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An o(nlog n) algorithm for the maximum agreement subtree problem for binary trees. SIAM J. Comput. 30(5), 1385–1404 (2000)

    Article  MathSciNet  Google Scholar 

  5. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc., Sunderland (2004)

    Google Scholar 

  6. Felsenstein, J.: PHYLIP, version 3.6. Software package, Department of Genome Sciences, University of Washington, Seattle, U.S.A. (2005)

    Google Scholar 

  7. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  Google Scholar 

  8. Jansson, J., Shen, C., Sung, W.-K.: Improved algorithms for constructing consensus trees. J. ACM 63(3), 1–24 (2016)

    Google Scholar 

  9. Kao, M.-Y., Lam, T.W., Sung, W.-K., Ting, H.-F.: Cavity matchings, label compressions, and unrooted evolutionary trees. SIAM J. Comput. 30(2), 602–624 (2000)

    Article  MathSciNet  Google Scholar 

  10. Margush, T., McMorris, F.R.: Consensus \(n\)-trees. Bull. Math. Biol. 43(2), 239–244 (1981)

    Google Scholar 

  11. Phillips, C., Warnow, T.J.: The asymmetric median tree—a new model for building consensus trees. Discrete Appl. Math. 71(1–3), 311–335 (1996)

    Article  MathSciNet  Google Scholar 

  12. Sokal, R.R., Rohlf, F.J.: Taxonomic congruence in the Leptopodomorpha re-examined. Syst. Zool. 30(3), 309–325 (1981)

    Article  Google Scholar 

  13. Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman & Hall/CRC, Boca Raton (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Kin Sung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajaby, R., Sung, WK. (2018). Computing Asymmetric Median Tree of Two Trees via Better Bipartite Matching Algorithm. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78825-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78824-1

  • Online ISBN: 978-3-319-78825-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics