Abstract
During the 2009 H1N1 influenza pandemic, there was rising concern about the potential contribution of international travel and global mass gatherings on the dynamic of the virus. The travel patterns after global mass gatherings can cause a rapid spread of infections. Studying the impact of travel patterns, high population density, and social mixing on disease transmission in these events could help public health authorities assess the risk of global epidemics and evaluate various prevention measures. There have been many studies on computational modeling of epidemic spread in various settings, but few of them address global mass gatherings. In this paper, we develop a stochastic susceptible-exposed-infected-recovered agent-based model to predict early stage of a disease epidemic among international participants in the annual Hajj or pilgrimage to Makkah (also called Mecca). The epidemic model is used to explore several scenarios with initial reproduction number R0 range from 1.3 to 1.7, and various initial proportions of infections range from 0.5% to 1% of total arriving pilgrims. Following an epidemic with one infectious per flight, the model results predict an average of 30% infectious and 20% exposed individuals in Makkah by the end of the arrival period. The proposed model can be used to assess various intervention measures during the arrival of international participants to control potential epidemics in different global mass gatherings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Abubakar, I., Gautret, P., Brunette, G.W., Blumberg, L., Johnson, D., Poumerol, G., Memish, Z.A., Barbeschi, M., Khan, A.S.: Global perspectives for prevention of infectious diseases associated with mass gatherings. Lancet. Infect. Dis. 12(1), 66–74 (2012)
Ajelli, M., Gonçalves, B., Balcan, D., Colizza, V., Hu, H., Ramasco, J.J., Merler, S., Vespignani, A.: Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect. Dis. 10(1), 190 (2010)
Al-Tawfiq, J.A., Gautret, P., Benkouiten, S., Memish, Z.A.: Mass gatherings and the spread of respiratory infections. Lessons from the Hajj. Ann. Am. Thorac. Soc. 13(6), 759–765 (2016)
Balcan, D., Gonçalves, B., Hu, H., Ramasco, J.J., Colizza, V., Vespignani, A.: Modeling the spatial spread of infectious diseases: the global epidemic and mobility computational model. J. Comput. Sci. 1(3), 132–145 (2010)
Boëlle, P.Y., Ansart, S., Cori, A., Valleron, A.J.: Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza Other Respir. Viruses 5(5), 306–316 (2011)
Carley, K.M., Fridsma, D.B., Casman, E., Yahja, A., Altman, N., Chen, L.C., Kaminsky, B., Nave, D.: BioWar: scalable agent-based model of bioattacks. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 36(2), 252–265 (2006)
Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini Jr., I.M.: FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6(1), e1000656 (2010)
Chowell, G., Nishiura, H., Viboud, C.: Modeling rapidly disseminating infectious disease during mass gatherings. BMC Med. 10(1), 159 (2012)
Coburn, B.J., Wagner, B.G., Blower, S.: Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med. 7(1), 30 (2009)
Dridi, M.H.: Tracking individual targets in high density crowd scenes analysis of a video recording in Hajj 2009. Curr. Urban Stud. 3, 35–53 (2015)
Fiore, A.E., Fry, A., Shay, D., Gubareva, L., Bresee, J.S., Uyeki, T.M., Centers for Disease Control and Prevention (CDC), et al.: Antiviral agents for the treatment and chemoprophylaxis of influenza: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm. Rep. 60(1), 1–24 (2011)
Fraser, C., Donnelly, C.A., Cauchemez, S., Hanage, W.P., Van Kerkhove, M.D., Hollingsworth, T.D., Griffin, J., Baggaley, R.F., Jenkins, H.E., Lyons, E.J., et al.: Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324(5934), 1557–1561 (2009)
Hu, H., Nigmatulina, K., Eckhoff, P.: The scaling of contact rates with population density for the infectious disease models. Math. Biosci. 244(2), 125–134 (2013)
Khan, K., Arino, J., Hu, W., Raposo, P., Sears, J., Calderon, F., Heidebrecht, C., Macdonald, M., Liauw, J., Chan, A., et al.: Spread of a novel influenza A (H1N1) virus via global airline transportation. N. Engl. J. Med. 361(2), 212–214 (2009)
Memish, Z.A., Zumla, A., Alhakeem, R.F., Assiri, A., Turkestani, A., Al Harby, K.D., Alyemni, M., Dhafar, K., Gautret, P., Barbeschi, M., et al.: Hajj: infectious disease surveillance and control. Lancet 383(9934), 2073–2082 (2014)
Morse, S.S.: Factors in the emergence of infectious diseases. In: Price-Smith, A.T. (ed.) Plagues and Politics. GIS, pp. 8–26. Palgrave Macmillan UK, London (2001). https://doi.org/10.1057/9780230524248_2
Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), e74 (2008)
Patlolla, P., Gunupudi, V., Mikler, A.R., Jacob, R.T.: Agent-based simulation tools in computational epidemiology. In: Böhme, T., Larios Rosillo, V.M., Unger, H., Unger, H. (eds.) IICS 2004. LNCS, vol. 3473, pp. 212–223. Springer, Heidelberg (2006). https://doi.org/10.1007/11553762_21
Perez, L., Dragicevic, S.: An agent-based approach for modeling dynamics of contagious disease spread. Int. J. Health Geogr. 8(1), 50 (2009)
Shi, P., Keskinocak, P., Swann, J.L., Lee, B.Y.: The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model. BMC Public Health 10(1), 778 (2010)
Steffen, R., Bouchama, A., Johansson, A., Dvorak, J., Isla, N., Smallwood, C., Memish, Z.A.: Non-communicable health risks during mass gatherings. Lancet. Infect. Dis. 12(2), 142–149 (2012)
Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., Régis, C., Pinton, J.F., Khanafer, N., Van den Broeck, W., et al.: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 9(1), 87 (2011)
Tabatabaei, S.M., Metanat, M., et al.: Mass gatherings and infectious diseases epidemiology and surveillance. Int. J. Infect. 2(2) (2015)
Tanaka, G., Urabe, C., Aihara, K.: Random and targeted interventions for epidemic control in metapopulation models. Sci. Rep. 4, 5522 (2014)
Tian, D., Liu, C., Sheng, Z., Chen, M., Wang, Y.: Analytical model of spread of epidemics in open finite regions. IEEE Access 5, 9673–9681 (2017)
Tuite, A.R., Greer, A.L., Whelan, M., Winter, A.L., Lee, B., Yan, P., Wu, J., Moghadas, S., Buckeridge, D., Pourbohloul, B., et al.: Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Can. Med. Assoc. J. 182(2), 131–136 (2010)
Yang, Y., Sugimoto, J.D., Halloran, M.E., Basta, N.E., Chao, D.L., Matrajt, L., Potter, G., Kenah, E., Longini, I.M.: The transmissibility and control of pandemic influenza A (H1N1) virus. Science 326(5953), 729–733 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Alshammari, S.M., Mikler, A.R. (2018). Modeling Spread of Infectious Diseases at the Arrival Stage of Hajj. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10814. Springer, Cham. https://doi.org/10.1007/978-3-319-78759-6_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-78759-6_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78758-9
Online ISBN: 978-3-319-78759-6
eBook Packages: Computer ScienceComputer Science (R0)