Abstract
Due to its robustness and built-in feature selection capability, random forest is frequently employed in omics studies for biomarker discovery and predictive modeling. However, random forest assumes equal importance of all features, while in reality domain knowledge may justify the prioritization of more relevant features. Furthermore, it has been shown that an antecedent feature selection step can improve the performance of random forest by reducing noises and search space. In this paper, we present a novel Know-guided regularized random forest (Know-GRRF) method that incorporates domain knowledge in a random forest framework for feature selection. Via rigorous simulations, we show that Know-GRRF outperforms existing methods by correctly identifying informative features and improving the accuracy of subsequent predictive models. Know-GRRF is responsive to a wide range of tuning parameters that help to better differentiate candidate features. Know-GRRF is also stable from run to run, making it robust to noises. We further proved that Know-GRRF is a generalized form of existing methods, RRF and GRRF. We applied Known-GRRF to a real world radiation biodosimetry study that uses non-human primate data to discover biomarkers for human applications. By using cross-species correlation as domain knowledge, Know-GRRF was able to identify three gene markers that significantly improved the cross-species prediction accuracy. We implemented Know-GRRF as an R package that is available through the CRAN archive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999). https://doi.org/10.1126/science.286.5439.531
Zhou, H., Skolnick, J.: A knowledge-based approach for predicting gene–disease associations. Bioinformatics 32, 2831–2838 (2016). https://doi.org/10.1093/bioinformatics/btw358
Barzilay, O., Brailovsky, V.L.: On domain knowledge and feature selection using a support vector machine. Pattern Recognit. Lett. 20, 475–484 (1999). https://doi.org/10.1016/S0167-8655(99)00014-8
Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 03, 185–205 (2005). https://doi.org/10.1142/S0219720005001004
Park, H., Niida, A., Imoto, S., Miyano, S.: Interaction-based feature selection for uncovering cancer driver genes through copy number-driven expression level. J. Comput. Biol. 24, 138–152 (2017). https://doi.org/10.1089/cmb.2016.0140
Iguyon, I., Elisseeff, A.: An introduction to variable and feature selection. J Mach. Learn. Res. 3, 1157–1182 (2003)
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J.M., Herrera, F.: A review of microarray datasets and applied feature selection methods. Inf. Sci. 282, 111–135 (2014). https://doi.org/10.1016/j.ins.2014.05.042
Deng, H., Runger, G.: Gene selection with guided regularized random forest. Pattern Recogn. 46, 3483–3489 (2013). https://doi.org/10.1016/j.patcog.2013.05.018
Breiman, L.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995)
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowl. Inf. Sys. 34, 483–519 (2013). https://doi.org/10.1007/s10115-012-0487-8
Park, J.G., Paul, S., Briones, N., Zeng, J., Gillis, K., et al.: Developing human radiation biodosimetry models: testing cross-species conversion approaches using an ex vivo model system. Radiat. Res. 187, 708–721 (2017). https://doi.org/10.1667/RR14655.1
Marchetti, F., Coleman, M.A., Jones, I.M., Wyrobek, A.J.: Candidate protein biodosimeters of human exposure to ionizing radiation. Int. J. Radiat. Biol. 82, 605–639 (2006). https://doi.org/10.1080/09553000600930103
Paul, S., Barker, C.A., Turner, H.C., McLane, A., Wolden, S.L., et al.: Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures. Radiat. Res. 175, 257–265 (2011). https://doi.org/10.1667/rr2420.1
Tucker, J.D., Joiner, M.C., Thomas, R.A., Grever, W.E., Bakhmutsky, M.V., et al.: Accurate gene expression-based biodosimetry using a minimal set of human gene transcripts. Int. J. Radiat. Oncol. Biol. Phys. 88, 933–939 (2014). https://doi.org/10.1016/j.ijrobp.2013.11.248
Riecke, A., Rufa, C.G., Cordes, M., Hartmann, J., Meineke, V., et al.: Gene expression comparisons performed for biodosimetry purposes on in vitro peripheral blood cellular subsets and irradiated individuals. Radiat. Res. 178, 234–243 (2012). https://doi.org/10.1667/rr2738.1
Bruserud, O., Reikvam, H., Fredly, H., Skavland, J., Hagen, K.M., et al.: Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation. Oncotarget 6, 2794–2811 (2015). https://doi.org/10.18632/oncotarget.3056
van Riggelen, J., Yetil, A., Felsher, D.W.: MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10, 301–309 (2010). https://doi.org/10.1038/nrc2819
Acknowledgments
We thank George Runger, Kristin Gillis, Vel Murugan, Jin Park and Garrick Wallstrom for insightful discussions. This project has been funded in part with federal funds from the Biomedical Advanced Research and Development Authority, office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services under Contract No. HHS01201000008C.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Guan, X., Liu, L. (2018). Know-GRRF: Domain-Knowledge Informed Biomarker Discovery with Random Forests. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10814. Springer, Cham. https://doi.org/10.1007/978-3-319-78759-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-78759-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78758-9
Online ISBN: 978-3-319-78759-6
eBook Packages: Computer ScienceComputer Science (R0)