[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Performance Evaluation of DBN Learning on Intel Multi- and Manycore Architectures

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10777))

  • 1561 Accesses

Abstract

In our previous papers [12, 13], we proposed the parallel realization of the Deep Belief Network (DBN). This research confirmed the potential usefulness of the first generation of the Intel MIC architecture for implementing DBN and similar algorithms. In this work, we investigate how the Intel MIC and CPU platforms can be applied to implement efficiently the complete learning process using DBNs with layers corresponding to the Restricted Boltzman Machines. The focus is on the new generation of Intel MIC devices known as Knights Landing. Unlike the previous generation, called Knights Corner, they are delivered not as coprocessors, but as standalone processors.

The learning procedure is based on the matrix approach, where learning samples are grouped into packages, and represented as matrices. We study the possible ways of improving the performance taking into account features of the Knights Landing architecture, and parameters of the learning algorithm. In particular, the influence of the package size on the accuracy of learning, as well as on the performance of computations are investigated using conventional CPU and Intel Xeon Phi. The performance advantages of Knights Landing over Knights Corner are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dongarra, J., Tomov, S., Luszczek, P., Kurzak, J., Gates, M., Yamazaki, I., Anzt, H., Haidar, A., Abdelfattah, A.: With extreme computing, the rules have changed. Comput. Sci. Eng. 19(3), 52–62 (2017)

    Article  MATH  Google Scholar 

  2. Fang, J., Varbanescu, A.L., Sips, H.: Benchmarking Intel Xeon Phi to guide kernel design. Delft University of Technology Parallel and Distributed Systems Report Series. No. PDS-2013-005, pp. 1–22 (2013)

    Google Scholar 

  3. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Intel Math Kernel Library: Reference Manual. Intel Corporation, Santa Clara (2009)

    Google Scholar 

  5. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Programming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

    Google Scholar 

  6. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition. Elsevier Science, Cambridge (2016)

    Google Scholar 

  7. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 664–676 (2017)

    Article  Google Scholar 

  8. Karpathy, A., Joulin, A., Li, F.F.F.: Deep fragment embeddings for bidirectional image sentence mapping. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 1889–1897 (2014)

    Google Scholar 

  9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Department of Computer Science, University of Toronto (2009)

    Google Scholar 

  10. Levesque, J., Vose, A.: Programming for Hybrid Multi/Manycore MPP Systems, 1st edn. Taylor & Francis Ltd, London (2017)

    Google Scholar 

  11. Lastovetsky, A., Szustak, L., Wyrzykowski, R.: Model-based optimization of EULAG kernel on Intel Xeon Phi through load imbalancing. IEEE Trans. Parallel Distrib. Syst. 28(3), 787–797 (2017). https://doi.org/10.1109/TPDS.2016.2599527

    Article  Google Scholar 

  12. Olas, T., Mleczko, W.K., Nowicki, R.K., Wyrzykowski, R.: Adaptation of deep belief networks to modern multicore architectures. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 459–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32149-3_43

    Chapter  Google Scholar 

  13. Olas, T., Mleczko, W.K., Nowicki, R.K., Wyrzykowski, R., Krzyzak, A.: Adaptation of RBM learning for Intel MIC architecture. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 90–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_9

    Chapter  Google Scholar 

  14. Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using graphics processors. In: Proceeding of 26th Annual International Conference on Machine Learning, ICML 2009, pp. 873–880. ACM (2009). https://doi.org/10.1145/1553374.1553486

  15. Reinders, J.: An overview of programming for Intel Xeon processors and Intel Xeon Phi coprocessors. Technical report, Intel Corporation (2012)

    Google Scholar 

  16. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of deep belief networks for natural language understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 22(4), 778–784 (2014). https://doi.org/10.1109/TASLP.2014.2303296

    Article  Google Scholar 

  17. Saule, E., Kaya, K., Çatalyürek, Ü.V.: Performance evaluation of sparse matrix multiplication kernels on Intel Xeon Phi. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 559–570. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_52

    Chapter  Google Scholar 

  18. Song, K., Liu, Y., Wang, R., Zhao, M., Hao, Z., Qian, D.: Restricted Boltzmann machines and deep belief networks on sunway cluster. In: 2016 IEEE 18th International Conference on High Performance Computing and Communications, pp. 245–252 (2016). https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0044

  19. Szustak, L., Rojek, K., Gepner, P.: Using Intel Xeon Phi coprocessor to accelerate computations in MPDATA algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 582–592. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_54

    Chapter  Google Scholar 

  20. Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adaptation of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci. Program. 2015, 14 (2015). https://doi.org/10.1155/2015/642705

    Google Scholar 

  21. Ueyoshi, K., Marukame, T., Asai, T., Motomura, M., Schmid, A.: FPGA implementation of a scalable and highly parallel architecture for restricted Boltzmann machines, 07, 2132–2141 (2016)

    Google Scholar 

  22. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. SIGPLAN Not. 26(6), 30–44 (1991). https://doi.org/10.1145/113446.113449

    Article  Google Scholar 

  23. Wolfe, M.: More iteration space tiling. In: Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, Supercomputing 1989, pp. 655–664. ACM, New York (1989). https://doi.org/10.1145/76263.76337

  24. Zhang, X.L., Wu, J.: Deep belief networks based voice activity detection. IEEE Trans. Audio Speech Lang. Process. 21(4), 697–710 (2013). https://doi.org/10.1109/TASL.2012.2229986

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Polish Ministry of Science and Education under Grant No. BS/PB-1-112-3030/17/P. The authors are grateful to the Czestochowa University of Technology for granting access to Intel CPU and Xeon Phi platforms provided by the MICLAB project No. POIG.02.03.00.24-093/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Olas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olas, T., Mleczko, W.K., Wozniak, M., Nowicki, R.K., Gepner, P. (2018). Performance Evaluation of DBN Learning on Intel Multi- and Manycore Architectures. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics