[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mutual Information Iterated Local Search: A Wrapper-Filter Hybrid for Feature Selection in Brain Computer Interfaces

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Abstract

Brain Computer Interfaces provide a very challenging classification task due to small numbers of instances, large numbers of features, non-stationary problems, and low signal-to-noise ratios. Feature selection (FS) is a promising solution to help mitigate these effects. Wrapper FS methods are typically found to outperform filter FS methods, but reliance on cross-validation accuracies can be misleading due to over-fitting. This paper proposes a filter-wrapper hybrid based on Iterated Local Search and Mutual Information, and shows that it can provide more reliable solutions, where the solutions are more able to generalise to unseen data. This study further contributes comparisons over multiple datasets, something that has been uncommon in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.bbci.de/competition/ii/#datasets.

  2. 2.

    http://www.bsp.brain.riken.jp/~qibin/homepage/Datasets.html.

References

  1. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016). https://doi.org/10.1109/TEVC.2015.2504420

    Article  Google Scholar 

  2. Vega, R., Sajed, T., Mathewson, K.W., Khare, K., Pilarski, P.M., Greiner, R., Sanchez-Ante, G., Antelis, J.M.: Assessment of feature selection and classification methods for recognizing motor imagery tasks from electroencephalographic signals. Artif. Intell. Res. 1, 37–51 (2016). https://doi.org/10.5430/air.v6n1p37

    Google Scholar 

  3. Cabrera, A.F., Farina, D., Dremstrup, K.: Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery. Med. Biol. Eng. Compu. 48(2), 123–132 (2010). https://doi.org/10.1007/s11517-009-0569-2

    Article  Google Scholar 

  4. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 6, 1–9 (2012). https://doi.org/10.3389/fnins.2012.00039

    Article  Google Scholar 

  5. Alotaiby, T., El-Samie, F.E.A., Alshebeili, S.A., Ahmad, I.: A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015(1), 66 (2015). https://doi.org/10.1186/s13634-015-0251-9

    Article  Google Scholar 

  6. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). https://doi.org/10.1145/584091.584093. (July 1928)

    Article  MathSciNet  MATH  Google Scholar 

  7. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005). https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  8. Ciaccio, E.J., Dunn, S.M., Akay, M.: Biosignal pattern recognition and interpretation systems: Part 2 of 4: methods for feature extraction and selection. IEEE Eng. Med. Biol. Mag. 12, 106–113 (1993). https://doi.org/10.1109/51.248173

    Article  Google Scholar 

  9. Rejer, I.: Genetic algorithm with aggressive mutation for feature selection in BCI feature space. Pattern Anal. Appl. 18(3), 485–492 (2014). https://doi.org/10.1007/s10044-014-0425-3

    Article  MathSciNet  Google Scholar 

  10. Wei, Q., Wang, Y.: Binary multi-objective particle swarm optimization for channel selection in motor imagery based brain-computer interfaces. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BME I), pp. 667–670 (2011). https://doi.org/10.3233/BME-151451

  11. Atyabi, A., Luerssen, M., Fitzgibbon, S.P., Powers, D.M.W.: Use of evolutionary algorithm-based methods in EEG based BCI systems. In: Swarm Intelligence for Electric and Electronic Engineering, pp. 326–344 (2012). https://doi.org/10.4018/978-1-4666-2666-9.ch016

  12. Gan, J.Q., Hasan, B.A.S., Tsui, C.S.L.: A filter-dominating hybrid sequential forward floating search method for feature subset selection in high-dimensional space. Int. J. Mach. Learn. Cybern. 5(3), 413–423 (2014). https://doi.org/10.1007/s13042-012-0139-z

    Article  Google Scholar 

  13. Khushaba, R.N., Al-Ani, A., AlSukker, A., Al-Jumaily, A.: A combined ant colony and differential evolution feature selection algorithm. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 1–12. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7_1

    Chapter  Google Scholar 

  14. Tan, F., Fu, X., Zhang, Y., Bourgeois, A.G.: A genetic algorithm-based method for feature subset selection. Soft. Comput. 12(2), 111–120 (2008). https://doi.org/10.1007/s00500-007-0193-8

    Article  Google Scholar 

  15. Ali, S.I., Shahzad, W.: A feature subset selection method based on symmetric uncertainty and Ant Colony Optimization. In: 2012 International Conference on Emerging Technologies, pp. 1–6 (2012). https://doi.org/10.1109/ICET.2012.6375420

  16. Nguyen, H.B., Xue, B., Liu, I., Zhang, M.: Filter based backward elimination in wrapper based PSO for feature selection in classification. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, pp. 3111–3118 (2014). https://doi.org/10.1109/CEC.2014.6900657

  17. Zhu, Z., Jia, S., Ji, Z.: Towards a memetic feature selection paradigm. IEEE Comput. Intell. Mag. 5(2), 41–53 (2010). https://doi.org/10.1109/MCI.2010.936311

    Article  Google Scholar 

  18. Lourenco, H.R., Martin, O.C., Stutzle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 363–397. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_12

    Google Scholar 

  19. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  20. Lotte, F., Congedo, M., Anatole, L., Lotte, F., Congedo, M., Anatole, L.: A Review of Classification Algorithms for EEG-based BCI (2007). https://doi.org/10.1088/1741-2560/4/2/R01

  21. Ramos, A.C., Vellasco, M.: Feature selection methods applied to motor imagery task classification. In: 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (2016). https://doi.org/10.1109/LA-CCI.2016.7885731, ISBN 9781509051052

  22. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Articial Intelligence (IJCAI), vol. 5, pp. 1–7 (1995). https://doi.org/10.1067/mod.2000.109031, ISBN 1-55860-363-8

  23. Lan, T., Erdogmus, D., Adami, A., Pavel, M., Mathan, S.: Salient EEG channel selection in brain computer interfaces by mutual information maximization. In: Conference proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 7, pp. 7064–7067. IEEE Engineering in Medicine and Biology Society (2005). https://doi.org/10.1109/IEMBS.2005.1616133

Download references

Acknowledgements

Work funded by UK EPSRC grant EP/J017515 (DAASE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Adair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adair, J., Brownlee, A.E.I., Ochoa, G. (2018). Mutual Information Iterated Local Search: A Wrapper-Filter Hybrid for Feature Selection in Brain Computer Interfaces. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics