Abstract
Brain Computer Interfaces provide a very challenging classification task due to small numbers of instances, large numbers of features, non-stationary problems, and low signal-to-noise ratios. Feature selection (FS) is a promising solution to help mitigate these effects. Wrapper FS methods are typically found to outperform filter FS methods, but reliance on cross-validation accuracies can be misleading due to over-fitting. This paper proposes a filter-wrapper hybrid based on Iterated Local Search and Mutual Information, and shows that it can provide more reliable solutions, where the solutions are more able to generalise to unseen data. This study further contributes comparisons over multiple datasets, something that has been uncommon in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016). https://doi.org/10.1109/TEVC.2015.2504420
Vega, R., Sajed, T., Mathewson, K.W., Khare, K., Pilarski, P.M., Greiner, R., Sanchez-Ante, G., Antelis, J.M.: Assessment of feature selection and classification methods for recognizing motor imagery tasks from electroencephalographic signals. Artif. Intell. Res. 1, 37–51 (2016). https://doi.org/10.5430/air.v6n1p37
Cabrera, A.F., Farina, D., Dremstrup, K.: Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery. Med. Biol. Eng. Compu. 48(2), 123–132 (2010). https://doi.org/10.1007/s11517-009-0569-2
Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 6, 1–9 (2012). https://doi.org/10.3389/fnins.2012.00039
Alotaiby, T., El-Samie, F.E.A., Alshebeili, S.A., Ahmad, I.: A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015(1), 66 (2015). https://doi.org/10.1186/s13634-015-0251-9
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). https://doi.org/10.1145/584091.584093. (July 1928)
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005). https://doi.org/10.1109/TPAMI.2005.159
Ciaccio, E.J., Dunn, S.M., Akay, M.: Biosignal pattern recognition and interpretation systems: Part 2 of 4: methods for feature extraction and selection. IEEE Eng. Med. Biol. Mag. 12, 106–113 (1993). https://doi.org/10.1109/51.248173
Rejer, I.: Genetic algorithm with aggressive mutation for feature selection in BCI feature space. Pattern Anal. Appl. 18(3), 485–492 (2014). https://doi.org/10.1007/s10044-014-0425-3
Wei, Q., Wang, Y.: Binary multi-objective particle swarm optimization for channel selection in motor imagery based brain-computer interfaces. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BME I), pp. 667–670 (2011). https://doi.org/10.3233/BME-151451
Atyabi, A., Luerssen, M., Fitzgibbon, S.P., Powers, D.M.W.: Use of evolutionary algorithm-based methods in EEG based BCI systems. In: Swarm Intelligence for Electric and Electronic Engineering, pp. 326–344 (2012). https://doi.org/10.4018/978-1-4666-2666-9.ch016
Gan, J.Q., Hasan, B.A.S., Tsui, C.S.L.: A filter-dominating hybrid sequential forward floating search method for feature subset selection in high-dimensional space. Int. J. Mach. Learn. Cybern. 5(3), 413–423 (2014). https://doi.org/10.1007/s13042-012-0139-z
Khushaba, R.N., Al-Ani, A., AlSukker, A., Al-Jumaily, A.: A combined ant colony and differential evolution feature selection algorithm. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 1–12. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7_1
Tan, F., Fu, X., Zhang, Y., Bourgeois, A.G.: A genetic algorithm-based method for feature subset selection. Soft. Comput. 12(2), 111–120 (2008). https://doi.org/10.1007/s00500-007-0193-8
Ali, S.I., Shahzad, W.: A feature subset selection method based on symmetric uncertainty and Ant Colony Optimization. In: 2012 International Conference on Emerging Technologies, pp. 1–6 (2012). https://doi.org/10.1109/ICET.2012.6375420
Nguyen, H.B., Xue, B., Liu, I., Zhang, M.: Filter based backward elimination in wrapper based PSO for feature selection in classification. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, pp. 3111–3118 (2014). https://doi.org/10.1109/CEC.2014.6900657
Zhu, Z., Jia, S., Ji, Z.: Towards a memetic feature selection paradigm. IEEE Comput. Intell. Mag. 5(2), 41–53 (2010). https://doi.org/10.1109/MCI.2010.936311
Lourenco, H.R., Martin, O.C., Stutzle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 363–397. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_12
Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.024
Lotte, F., Congedo, M., Anatole, L., Lotte, F., Congedo, M., Anatole, L.: A Review of Classification Algorithms for EEG-based BCI (2007). https://doi.org/10.1088/1741-2560/4/2/R01
Ramos, A.C., Vellasco, M.: Feature selection methods applied to motor imagery task classification. In: 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (2016). https://doi.org/10.1109/LA-CCI.2016.7885731, ISBN 9781509051052
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Articial Intelligence (IJCAI), vol. 5, pp. 1–7 (1995). https://doi.org/10.1067/mod.2000.109031, ISBN 1-55860-363-8
Lan, T., Erdogmus, D., Adami, A., Pavel, M., Mathan, S.: Salient EEG channel selection in brain computer interfaces by mutual information maximization. In: Conference proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 7, pp. 7064–7067. IEEE Engineering in Medicine and Biology Society (2005). https://doi.org/10.1109/IEMBS.2005.1616133
Acknowledgements
Work funded by UK EPSRC grant EP/J017515 (DAASE).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Adair, J., Brownlee, A.E.I., Ochoa, G. (2018). Mutual Information Iterated Local Search: A Wrapper-Filter Hybrid for Feature Selection in Brain Computer Interfaces. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-77538-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77537-1
Online ISBN: 978-3-319-77538-8
eBook Packages: Computer ScienceComputer Science (R0)