[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Complexity of Finding Internally Vertex-Disjoint Long Directed Paths

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

  • 2744 Accesses

Abstract

For two positive integers k and \(\ell \), a \((k \times \ell )\) -spindle is the union of k pairwise internally vertex-disjoint directed paths with \(\ell \) arcs each between two vertices u and v. We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain the following complexity dichotomy: for a fixed \(\ell \ge 1\), finding the largest k such that an input digraph G contains a subdivision of a \((k \times \ell )\)-spindle is polynomial-time solvable if \(\ell \le 3\), and NP-hard otherwise. We place special emphasis on finding spindles with exactly two paths and present FPT algorithms that are asymptotically optimal under the ETH. These algorithms are based on the technique of representative families in matroids, and use also color-coding as a subroutine. Finally, we study the case where the input graph is acyclic, and present several algorithmic and hardness results.

Work supported by DE-MO-GRAPH grant ANR-16-CE40-0028 and CNPq grant 306262/2014-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Araújo, J., Campos, V.A., Maia, A.K., Sau, I., Silva, A.: On the complexity of finding internally vertex-disjoint long directed paths. CoRR, abs/1706.09066 (2017)

    Google Scholar 

  3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer, London (2008). https://doi.org/10.1007/978-1-84800-998-1

    MATH  Google Scholar 

  4. Bang-Jensen, J., Havet, F., Maia, A.K.: Finding a subdivision of a digraph. Theoret. Comput. Sci. 562, 283–303 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benhocine, A., Wojda, A.P.: On the existence of specified cycles in a tournament. J. Graph Theory 7(4), 469–473 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brewster, R.C., Hell, P., Pantel, S.H., Rizzi, R., Yeo, A.: Packing paths in digraphs. J. Graph Theory 44(2), 81–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, N., Havet, F., Lochet, W., Nisse, N.: Subdivisions of oriented cycles in digraphs with large chromatic number. CoRR, abs/1605.07762 (2016)

    Google Scholar 

  8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-662-53622-3

    MATH  Google Scholar 

  10. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)

    Article  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  12. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pp. 479–488 (2011)

    Google Scholar 

  13. Havet, F., Maia, A.K., Mohar, B.: Finding a subdivision of a prescribed digraph of order 4. J. Graph Theory (to appear). https://doi.org/10.1002/jgt.22174

  14. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths with length constraints. Networks 12(3), 277–286 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, R., Kim, S.-J., Ma, J., Park, B.: Cycles with two blocks in \(k\)-chromatic digraphs. CoRR, abs/1610.05839 (2016)

    Google Scholar 

  16. Kriesell, M.: Disjoint \(A\)-paths in digraphs. J. Comb. Theory Ser. B 95(1), 168–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Metzlar, A.: Disjoint paths in acyclic digraphs. J. Comb. Theory Ser. B 57(2), 228–238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Monien, B.: How to find long paths efficiently. Ann. Discret. Math. 25, 239–254 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Schrijver, A.: A short proof of Mader’s \(\cal{S}\)-paths theorem. J. Comb. Theory Ser. B 82(2), 319–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)

    Google Scholar 

  21. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. J. Comput. Syst. Sci. 82(3), 488–502 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zehavi, M.: A randomized algorithm for long directed cycle. Inf. Process. Lett. 116(6), 419–422 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Sau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Araújo, J., Campos, V.A., Maia, A.K., Sau, I., Silva, A. (2018). On the Complexity of Finding Internally Vertex-Disjoint Long Directed Paths. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics