[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Saliency-GD: A TF-IDF Analogy for Landmark Image Mining

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

Abstract

In this paper we address the problem of unsupervised landmark mining, which is to automatically discover frequently appearing landmarks from an unstructured image dataset. Landmark mining often suffers from false matches resulted from cluttered backgrounds and foregrounds, inter-class similarities, and so on. Analogous to TF-IDF in image retrieval, we propose the Saliency-GD weighting scheme of visual words, which can be easily integrated into state-of-the-art local-feature-based visual instance mining frameworks. Saliency detection provides feature weighting in image space from the attention perspective, and in feature space, the knowledge of geographic density (GD) transferred from a separate training dataset gives a multimodal selection of meaningful visual words. Experiments on public landmark datasets show that Saliency-GD weighting scheme greatly improves the landmark mining performance with increasing discrimination power of visual features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, M.M., Mitra, N., Huang, X., Torr, P., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  2. Chum, O., Matas, J.: Large scale discovery of spatially related images. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 371–377 (2010)

    Article  Google Scholar 

  3. Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: finding a (thick) needle in a haystack. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17–24 (2009)

    Google Scholar 

  4. Crandall, D., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos. In: World Wide Web Conference (WWW), pp. 761–770 (2009)

    Google Scholar 

  5. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.: What makes Paris look like Paris. ACM Trans. Graph. 31(4), 101:1–101:9 (2012)

    Article  Google Scholar 

  6. Goldberg, C., Chen, T., Zhang, F.L., Shamir, A., Hu, S.M.: Data-driven object manipulation in images. Comput. Graph. Forum 31(2), 265–274 (2012)

    Article  Google Scholar 

  7. Hauff, C., Thomee, B., Trevisiol, M.: Working notes for the placing task at MediaEval 2013. In: MediaEval Workshop (2013)

    Google Scholar 

  8. He, J., Feng, J., Liu, X., Cheng, T., Lin, T.H., Chung, H., Chang, S.F.: Mobile product search with bag of hash bits and boundary reranking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3005–3012 (2012)

    Google Scholar 

  9. Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87(3), 316–336 (2010)

    Article  Google Scholar 

  10. Li, H.: Multimodal visual pattern mining with convolutional neural networks. In: ACM International Conference on Multimedia Retrieval (ICMR), pp. 427–430 (2016)

    Google Scholar 

  11. Li, H., Ellis, J., Ji, H., Chang, S.F.: Event specific multimodal pattern mining for knowledge base construction. In: ACM International Conference on Multimedia, pp. 821–830 (2016)

    Google Scholar 

  12. Li, W., Wang, C., Zhang, L., Rui, Y., Zhang, B.: Scalable visual instance mining with instance graph. In: British Machine Vision Conference (BMVC), pp. 98:1–98:11 (2015)

    Google Scholar 

  13. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  15. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)

    Google Scholar 

  16. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  17. Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from community photo collections. In: ACM International Conference on Image and Video Retrieval (CIVR), pp. 47–56 (2008)

    Google Scholar 

  18. Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1939–1946 (2013)

    Google Scholar 

  19. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision (ICCV), pp. 1470–1477 (2003)

    Google Scholar 

  20. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2001)

    Google Scholar 

  21. Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 25–32 (2009)

    Google Scholar 

  22. Zhang, W., Li, H., Ngo, C.W., Chang, S.F.: Scalable visual instance mining with threads of features. In: ACM International Conference on Multimedia, pp. 297–306 (2014)

    Google Scholar 

  23. Zhu, Z., Xu, C.: Organizing photographs with geospatial and image semantics. Multimed. Syst., 1–9 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Basic Research Program (973 Program) of China (No. 2013CB329403), and the National Natural Science Foundation of China (Nos. 61332007, 91420201 and 61620106010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Li, J., Zhang, B. (2018). Saliency-GD: A TF-IDF Analogy for Landmark Image Mining. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics