[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Semantic Sequence Analysis for Human Activity Prediction

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

  • 2854 Accesses

Abstract

The task of long video analysis is challenging, and it is often the case that many human actions occur but only a few contribute to the semantic topic of the video. However, compared with short video human activity studies, long video analysis has its practical utility especially considering the effort of watching a long video for human. In this paper, we propose to learn semantic symbol sequence patterns of complex videos for activity prediction. The prefix method of semantic stream is designed based on the semantic symbol sequence and their time marks. The prediction phase is implemented via matching semantic sequence of incomplete videos and sequence patterns of different activities. We evaluate various prediction methods depending on low-level features or high-level descriptions. The empirical result suggests that when applied to activity prediction, sequence pattern mining can effectively reduce its reliance upon the low level features and improve predicting performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan, C., Li, X., Hu, W.M., et al.: 3D R transform on spatio-temporal interest points for action recognition. In: CVPR, pp. 724–730 (2013)

    Google Scholar 

  2. Soomro, K., Idrees, H., Shah, M.: Predicting the where and what of actors and actions through online action localization. In: CVPR, pp. 2648–2657 (2016)

    Google Scholar 

  3. Wang, L., Zhao, X., Cao, L., et al.: Context-associative hierarchical memory model for human activity recognition and prediction. IEEE Trans. Multimedia 19(3), 646–659 (2017)

    Article  Google Scholar 

  4. Seo, H.J., Milanfar, P.: Action recognition from one example. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 867–882 (2011)

    Article  Google Scholar 

  5. Yan, J., Zhu, M., Liu, H., et al.: Visual saliency detection via sparsity pursuit. IEEE Signal Process. Lett. 17(8), 739–742 (2010)

    Article  Google Scholar 

  6. Gan, C., et al.: DevNet: a deep event network for multimedia event detection and evidence recounting. In: CVPR, pp. 2568–2577 (2015)

    Google Scholar 

  7. Liu, W,. Mei, T., Zhang, Y., et al.: Multi-task deep visual-semantic embedding for video thumbnail selection. In: CVPR, pp. 3707–3715 (2015)

    Google Scholar 

  8. Kitani, K.M., Okabe, T., Sato, Y., et al.: Fast unsupervised ego-action learning for first-person sports videos. In: CVPR, pp. 3241–3248 (2011)

    Google Scholar 

  9. Ryoo, M.S., Aggarwal, J.K.: Observe-and-explain: a new approach for multiple hypotheses tracking of humans and objects. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  10. Li, Y., Zhou, Y., Yan, J., Niu, Z., Yang, J.: Visual saliency based on conditional entropy. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5994, pp. 246–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12307-8_23

    Chapter  Google Scholar 

  11. Ryoo, M.S.: Human activity prediction: early recognition of ongoing activities from streaming videos. In: Proceedings, vol. 24(4), pp. 1036–1043 (2011)

    Google Scholar 

  12. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15

    Chapter  Google Scholar 

  13. Li, K., Fu, Y.: Prediction of human activity by discovering temporal sequence patterns. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1644–1657 (2014)

    Article  Google Scholar 

  14. Cheng, Y., Fan, Q., Pankanti, S., et al.: Temporal sequence modeling for video event detection. In: CVPR, pp. 2235–2242 (2014)

    Google Scholar 

  15. Xu, Z., Qing, L., Miao, J.: Activity auto-completion: predicting human activities from partial videos. In: ICCV, pp. 3191–3199 (2015)

    Google Scholar 

  16. Hu, J.-F., Zheng, W.-S., Ma, L., Wang, G., Lai, J.: Real-time RGB-D activity prediction by soft regression. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 280–296. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_17

    Chapter  Google Scholar 

  17. Guyet, T., Quiniou, R.: Extracting temporal patterns from interval-based sequences. In: IJCAI, pp. 1306–1311 (2014)

    Google Scholar 

  18. Aggarwal, C.C., Han, J.W.: Frequent Pattern Mining. Springer, New York (2014). https://doi.org/10.1007/978-3-319-07821-2

    Book  MATH  Google Scholar 

  19. Laptev, I., Perez, P.: Retrieving actions in movies. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  20. Schiele, B., Andriluka, M., Amin, S., et al.: A database for fine grained activity detection of cooking activities. In: CVPR, pp. 1194–1201 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G., Qin, Z., Xu, K. (2018). Semantic Sequence Analysis for Human Activity Prediction. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics