Abstract
With the wide application of computer vision system, image haze removal has become a new challenge. A great number of image dehazing methods are proposed, which have varying degrees of dehazing effects and different shortcomings. The color attenuation prior for image haze removal presents a new way based on depth map estimation. The novel method performs well with little distortion and natural colors. This paper discusses the color attenuation prior for image haze removal and proposes the haze removal method based on global-local optimization for depth map. Regarding the halo artifacts in dehazing images, we combine the minimum filter and minimum-maximum filter to detect the potential areas of the halo artifacts and suppress them. For the case of the underestimation of depth information, we take advantage of the atmospheric light estimation to perform global optimization for final depth map. Experimental results demonstrate excellent performance of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Woodell, G.A., Jobson, D.J., Rahman, Z.U., Hines, G.D.: Advanced image processing of aerial imagery. In: Visual Information Processing, p. 62460E (2006). https://doi.org/10.1117/12.666767
Gao, Y., Hu, H., Wang, S., Li, B.: A fast image dehazing algorithm based on negative correction. Sig. Process. 103, 380–398 (2014). https://doi.org/10.1016/j.sigpro.2014.02.016
Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P.: A fast semi-inverse approach to detect and remove the haze from a single Image. In: Asian Conference on Computer Vision, pp. 501–514 (2010). https://doi.org/10.1007/978-3-642-19309-5_39
Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., Lischinski, D.: Deep photo: model-based photograph enhancement and viewing. ACM Trans. Graph. 27(5), 116 (2008). https://doi.org/10.1145/1457515.1409069
Narasimhan, S.G., Nayar, S.K.: Interactive (de) weathering of an image using physical models. In: IEEE Workshop on Color and Photometric Methods in Computer Vision (2003)
Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: Proceedings of CVPR. IEEE Press, vol. 1, p. I (2001). https://doi.org/10.1109/cvpr.2001.990493
Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Polarization-based vision through haze. Appl. Opt. 42(3), 511–525 (2003). https://doi.org/10.1364/AO.42.000511
Shwartz, S., Namer, E., Schechner, Y.Y.: Blind haze separation. In: Proceedings of CVPR. IEEE Press, vol. 2, pp. 1984–1991 (2006). https://doi.org/10.1109/cvpr.2006.71
Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather. In: Proceedings of CVPR. IEEE Press, vol. 1, pp. 598–605 (2000). https://doi.org/10.1109/cvpr.2000.855874
Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vision 48(3), 233–254 (2002). https://doi.org/10.1023/A:1016328200723
Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003). https://doi.org/10.1109/TPAMI.2003.1201821
Hu, H., Wu, J., Li, B., Guo, Q., Zheng, J.: An adaptive fusion algorithm for visible and infrared videos based on entropy and the cumulative distribution of gray levels. IEEE Trans. Multimedia 99, 2706–2719 (2017). https://doi.org/10.1109/tmm.2017.2711422
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213
Xiao, C., Gan, J.: Fast image dehazing using guided joint bilateral filter. Vis. Comput. 28(6–8), 713–721 (2012). https://doi.org/10.1007/s00371-012-0679-y
Xie, B., Guo, F., Cai, Z.: Improved single image dehazing using dark channel prior and multi-scale retinex. In: International Conference on Intelligent System Design and Engineering Application, vol. 1, pp. 848–851 (2010). https://doi.org/10.1109/isdea.2010.141
Fattal, R.: Single image dehazing. ACM Trans. Graph. 27(3), 72 (2008). https://doi.org/10.1145/1360612.1360671
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: Proceedings of CVPR. IEEE Press, pp. 1956–1963 (2009). https://doi.org/10.1109/cvpr.2009.5206515
Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015). https://doi.org/10.1109/TIP.2015.2446191
Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: Proceedings of CVPR. IEEE Press, pp. 1674–1682 (2016). https://doi.org/10.1109/cvpr.2016.185
Gao, Y., Hu, H., Li, B., Guo, Q.: Naturalness preserved non-uniform illumination estimation for image enhancement based on retinex. IEEE Trans. Multimedia (2017). https://doi.org/10.1109/TMM.2017.2740025
McCartney, E.J.: Optics of the atmosphere: scattering by molecules and particles. Wiley, New York, USA (1976)
Narasimhan, S.G., Nayar, S.K.: Removing weather effects from monochrome images. In: Proceedings of CVPR, pp. II-186–II-193. IEEE Press (2001). https://doi.org/10.1109/cvpr.2001.990956
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861
Acknowledgements
This work was partially supported by the National Key Research and Development Program of China (Grant No. 2016YFC0801003), the National Natural Science Foundation of China (No. 61370121, No. 61421003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Zhang, H., Gao, Y., Hu, HM., Guo, Q., Cui, Y. (2018). Single Image Haze Removal Based on Global-Local Optimization for Depth Map. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-77380-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77379-7
Online ISBN: 978-3-319-77380-3
eBook Packages: Computer ScienceComputer Science (R0)