[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Single Image Haze Removal Based on Global-Local Optimization for Depth Map

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

Abstract

With the wide application of computer vision system, image haze removal has become a new challenge. A great number of image dehazing methods are proposed, which have varying degrees of dehazing effects and different shortcomings. The color attenuation prior for image haze removal presents a new way based on depth map estimation. The novel method performs well with little distortion and natural colors. This paper discusses the color attenuation prior for image haze removal and proposes the haze removal method based on global-local optimization for depth map. Regarding the halo artifacts in dehazing images, we combine the minimum filter and minimum-maximum filter to detect the potential areas of the halo artifacts and suppress them. For the case of the underestimation of depth information, we take advantage of the atmospheric light estimation to perform global optimization for final depth map. Experimental results demonstrate excellent performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Woodell, G.A., Jobson, D.J., Rahman, Z.U., Hines, G.D.: Advanced image processing of aerial imagery. In: Visual Information Processing, p. 62460E (2006). https://doi.org/10.1117/12.666767

  2. Gao, Y., Hu, H., Wang, S., Li, B.: A fast image dehazing algorithm based on negative correction. Sig. Process. 103, 380–398 (2014). https://doi.org/10.1016/j.sigpro.2014.02.016

    Article  Google Scholar 

  3. Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P.: A fast semi-inverse approach to detect and remove the haze from a single Image. In: Asian Conference on Computer Vision, pp. 501–514 (2010). https://doi.org/10.1007/978-3-642-19309-5_39

    Chapter  Google Scholar 

  4. Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., Lischinski, D.: Deep photo: model-based photograph enhancement and viewing. ACM Trans. Graph. 27(5), 116 (2008). https://doi.org/10.1145/1457515.1409069

    Article  Google Scholar 

  5. Narasimhan, S.G., Nayar, S.K.: Interactive (de) weathering of an image using physical models. In: IEEE Workshop on Color and Photometric Methods in Computer Vision (2003)

    Google Scholar 

  6. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: Proceedings of CVPR. IEEE Press, vol. 1, p. I (2001). https://doi.org/10.1109/cvpr.2001.990493

  7. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Polarization-based vision through haze. Appl. Opt. 42(3), 511–525 (2003). https://doi.org/10.1364/AO.42.000511

    Article  Google Scholar 

  8. Shwartz, S., Namer, E., Schechner, Y.Y.: Blind haze separation. In: Proceedings of CVPR. IEEE Press, vol. 2, pp. 1984–1991 (2006). https://doi.org/10.1109/cvpr.2006.71

  9. Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather. In: Proceedings of CVPR. IEEE Press, vol. 1, pp. 598–605 (2000). https://doi.org/10.1109/cvpr.2000.855874

  10. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vision 48(3), 233–254 (2002). https://doi.org/10.1023/A:1016328200723

    Article  MATH  Google Scholar 

  11. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003). https://doi.org/10.1109/TPAMI.2003.1201821

    Article  Google Scholar 

  12. Hu, H., Wu, J., Li, B., Guo, Q., Zheng, J.: An adaptive fusion algorithm for visible and infrared videos based on entropy and the cumulative distribution of gray levels. IEEE Trans. Multimedia 99, 2706–2719 (2017). https://doi.org/10.1109/tmm.2017.2711422

    Article  Google Scholar 

  13. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  14. Xiao, C., Gan, J.: Fast image dehazing using guided joint bilateral filter. Vis. Comput. 28(6–8), 713–721 (2012). https://doi.org/10.1007/s00371-012-0679-y

    Article  Google Scholar 

  15. Xie, B., Guo, F., Cai, Z.: Improved single image dehazing using dark channel prior and multi-scale retinex. In: International Conference on Intelligent System Design and Engineering Application, vol. 1, pp. 848–851 (2010). https://doi.org/10.1109/isdea.2010.141

  16. Fattal, R.: Single image dehazing. ACM Trans. Graph. 27(3), 72 (2008). https://doi.org/10.1145/1360612.1360671

    Article  Google Scholar 

  17. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: Proceedings of CVPR. IEEE Press, pp. 1956–1963 (2009). https://doi.org/10.1109/cvpr.2009.5206515

  18. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015). https://doi.org/10.1109/TIP.2015.2446191

    Article  MathSciNet  Google Scholar 

  19. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: Proceedings of CVPR. IEEE Press, pp. 1674–1682 (2016). https://doi.org/10.1109/cvpr.2016.185

  20. Gao, Y., Hu, H., Li, B., Guo, Q.: Naturalness preserved non-uniform illumination estimation for image enhancement based on retinex. IEEE Trans. Multimedia (2017). https://doi.org/10.1109/TMM.2017.2740025

    Article  Google Scholar 

  21. McCartney, E.J.: Optics of the atmosphere: scattering by molecules and particles. Wiley, New York, USA (1976)

    Google Scholar 

  22. Narasimhan, S.G., Nayar, S.K.: Removing weather effects from monochrome images. In: Proceedings of CVPR, pp. II-186–II-193. IEEE Press (2001). https://doi.org/10.1109/cvpr.2001.990956

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China (Grant No. 2016YFC0801003), the National Natural Science Foundation of China (No. 61370121, No. 61421003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Miao Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Gao, Y., Hu, HM., Guo, Q., Cui, Y. (2018). Single Image Haze Removal Based on Global-Local Optimization for Depth Map. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics