[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Statistical Stemmers: A Reproducibility Study

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2018)

Abstract

Statistical stemmers are important components of Information Retrieval (IR) systems, especially for text search over languages with few linguistic resources. In recent years, research on stemmers produced relevant results, especially in 2011 when three language-independent stemmers were published in relevant venues. In this paper, we describe our efforts for reproducing these three stemmers. We also share the code as open-source and an extended version of Terrier system integrating the developed stemmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://snowballstem.org/.

  2. 2.

    http://github.com/giansilv/statisticalStemmers/.

  3. 3.

    http://direct.dei.unipd.it/.

  4. 4.

    http://trec.nist.gov/.

  5. 5.

    http://fire.irsi.res.in/fire/static/data/.

  6. 6.

    http://members.unine.ch/jacques.savoy/clef/.

References

  1. Di Nunzio, G.M., Ferro, N., Mandl, T., Peters, C.: CLEF 2007: ad hoc track overview. In: Peters, C., et al. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 13–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85760-0_2

    Chapter  Google Scholar 

  2. Dietz, F., Petras, V.: A component-level analysis of an academic search test collection. In: Jones, G.J.F., et al. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 29–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1_3

    Chapter  Google Scholar 

  3. Dolamic, L., Savoy, J.: Indexing and stemming approaches for the Czech language author links open overlay panel. Inf. Proces. Manage. 45(6), 714–720 (2009)

    Article  Google Scholar 

  4. Ferro, N., Silvello, G.: CLEF 15th birthday: what can we learn from ad hoc retrieval? In: Kanoulas, E., Lupu, M., Clough, P., Sanderson, M., Hall, M., Hanbury, A., Toms, E. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 31–43. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11382-1_4

    Google Scholar 

  5. Krovetz, R.: Viewing morphology as an inference process. In: Proceedings of 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1993), pp. 191–202. ACM Press (1993)

    Google Scholar 

  6. Lovins, J.B.: Development of a Stemming algorithm. Mech. Transl. Comput. Linguist. 11(1/2), 22–31 (1968)

    Google Scholar 

  7. Macdonald, C., McCreadie, R., Santos, R.L.T., Ounis, I.: From puppy to maturity: experiences in developing terrier. In: Proceedings of OSIR at SIGIR, pp. 60–63 (2012)

    Google Scholar 

  8. Paik, J.H., Mitra, M., Parui, S.K., Järvelin, K.: GRAS: an effective and efficient stemming algorithm for information retrieval. ACM Trans. Inf. Syst. 29(4), 19 (2011)

    Article  Google Scholar 

  9. Paik, J.H., Pal, D., Parui, S.K.: A novel corpus-based stemming algorithm using co-occurrence statistics. In: Proceedings of 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2011), pp. 863–872. ACM Press (2011)

    Google Scholar 

  10. Paik, J.H., Parui, S.K.: A fast corpus-based stemmer. ACM Trans. Asian Lang. Inf. Process. 10(2), 1–16 (2011)

    Article  Google Scholar 

  11. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  12. Savoy, J.: Searching strategies for the Hungarian language. Inf. Process. Manage. 44(1), 310–324 (2008)

    Article  Google Scholar 

  13. Singh, J., Gupta, V.: Text stemming: approaches, applications, and challenges. ACM Comput. Surv. (CSUR) 49(3), 45:1–45:46 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianmaria Silvello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silvello, G. et al. (2018). Statistical Stemmers: A Reproducibility Study. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds) Advances in Information Retrieval. ECIR 2018. Lecture Notes in Computer Science(), vol 10772. Springer, Cham. https://doi.org/10.1007/978-3-319-76941-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76941-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76940-0

  • Online ISBN: 978-3-319-76941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics