[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classification of Dengue Gene Expression Using Entropy-Based Feature Selection and Pruning on Neural Network

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2017)

Abstract

Dengue virus is a growing problem in tropical countries. It serves diseases, especially in children. Different diagnosing methods like ELISA, Platelia, haemocytometer, RT-PCR, decision tree algorithms and Support Vector Machine algorithms are used to diagnose the dengue infection using the detection of antibodies IgG and IgM but the recognition of IgM is not possible between thirty to ninety days of dengue virus infection. These methods could not find the correct result and needs a volume of the blood. It is not possible, especially in the children. To overcome these problems, this paper proposes classification method of dengue infection based on informative and most significant genes in the gene expression of dengue patients. The proposed method needs only gene expression for a patient which is easily obtained from skin, hair and so on. The classification accuracy has been evaluated on various benchmark algorithms. It has been observed that the increase in classification accuracy for the proposed method is highly significant for dengue gene expression datasets when compared with benchmark algorithms and the standard results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tanner, L., Schreiber, M., Low, J.-G.H., Ong, A., Tolfvenstam, T., Lai, Y.L., Ng, L.C., Leo, Y.S., Puong, L.T., Vasudevan, S.G., Simmons, C.P., Hibberd, M.L., Eong, E.: Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl. Trop. Dis. 3, e196 (2008)

    Google Scholar 

  2. Singh, S., Singh, A., Singh, M.: Recommender system for detection of dengue using fuzzy logic. J. Comput. Eng. Technol. 7, 44–52 (2016)

    Google Scholar 

  3. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi

  4. Bhatt, A., Joshi, M.: Analytical study of applied data mining in health care. Int. J. Emer. Technol. 8, 124–127 (2017)

    Google Scholar 

  5. Arunkumar, P.M., Chitradevi, B., Karthick, P., Ganesan, M., Madhan, A.S.: Dengue disease prediction using decision tree and support vector machine. SSRG Int. J. Comput. Sci. Eng. 1, 60–63 (2017)

    Google Scholar 

  6. Fathima, S.A., Manimegalai, D., Hundewale, N.: A review of data mining classification techniques applied for diagnosis and prognosis of the arbovirus – dengue. Int. J. Comput. Sci. 6, 322–328 (2011)

    Google Scholar 

  7. Saha, P., Mandal, R.: Detection of dengue disease using artificial neural networks. Int. J. Comput. Eng. 5, 65–68 (2017)

    Google Scholar 

  8. Fatima, M., Pasha, M.: Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 9, 1–16 (2017)

    Google Scholar 

  9. Pabbi, V.: Fuzzy expert system for medical diagnosis. Int. J. Sci. Res. 5, 1–7 (2017)

    Article  Google Scholar 

  10. Roziqin, C.M., Basuki, A., Harsono, T.: Parameters data distribution analysis for dengue fever breaks in Jember using Monte Carlo. Int. J. Comput. Sci. Soft. Eng. 5, 45–48 (2016)

    Google Scholar 

  11. Mishra, S., Mohanty, P.S., Hota, R., Badajena, J.C.: Rough set approach for generation of classification rules for dengue. Int. J. Comput. Appl. 11, 31–35 (2015)

    Google Scholar 

  12. Shaukat, K., Masood, N., Shafaat, B.A., Jabbar, K., Shabbir, H., Shabbir, S.: Dengue fever in perspective of clustering algorithms. Data Min. Genomics Proteomics. 6, 1–5 (2015)

    Google Scholar 

  13. Subitha, N., Padmapriya, A.: Diagnosis for dengue fever using spatial data mining. Int. J. Comput. Trends Technol. 4, 2646–2651 (2013)

    Google Scholar 

  14. Tarle, B., Tajanpure, R., Jena, S.: Medical data classification using different optimization techniques: a survey. Int. J. Res. Eng. Technol. 5, 101–108 (2016)

    Google Scholar 

  15. Cetiner, G.B., Sari, M., Aburas, H.M.: Recognition of dengue disease pattern using artificial neural networks. Paper Presented at Fifth International Advanced Technologies Symposium (IAST 2009) (2009)

    Google Scholar 

  16. Ibrahim, F., Nasir Taib, M., Wan Abas, B.A.W., Chong Guan, C., Sulaiman, S.: A novel dengue fever (DF) and dengue Haemorrhagic fever (DHF) analysis using artificial neural network (ANN). Comput. Methods Programs Biomed. 79, 273–281 (2005)

    Article  Google Scholar 

  17. Reed, R.: Pruning algorithms – a survey. IEEE Trans. Neural Netw. 4(5), 740–747 (1993)

    Article  Google Scholar 

  18. Munasinghe, A., Premaratne, H.L., Fernando, M.G.N.A.S.: Towards an early warning system to combat dengue. Int. J. Comput. Sci. Electr. Eng. 1(2), 252–256 (2013)

    Google Scholar 

  19. Greer, K.: Tree pruning for new search techniques in computer games. Adv. Artif. Intell. (2013). http://dx.doi.org/10.1155/2013/357068

  20. Lin, Z., Liu, R., Su, Z.: Linearized Alternating Direction Method with Adaptive Penalty for low-rank representation. In: Advances in Neural Information Processing Systems (2011)

    Google Scholar 

  21. Dreiseitl, S., Machado, O.L.: Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35(5), 352–359 (2002)

    Article  Google Scholar 

  22. Zeng, X., Yeung, S.D.: Hidden neuron pruning of multilayer perceptron using a quantified sensitivity measure. Neuro Computing 69(7–9), 825–837 (2006)

    Google Scholar 

  23. Lima, J.-C.R., Rouquayrol, M.Z., Callado, M.R., Guede, M.-I.F., Pessoa, C.: Interpretation of the presence of IgM and IgG antibodies in a rapid test for dengue: analysis of dengue antibody prevalence in Fortaleza City in the 20th year of the epidemic. Rev. Soc. Bras. Med. Trop. 45(2), 163–167 (2012)

    Article  Google Scholar 

  24. Vaughn, W.D., Nisalak, A., Kalayanarooj, S., Solomon, T., Dung, N.M., Cuzzubbo, A., Devine, P.: Evaluation of a rapid immunochromatographic test for diagnosis of dengue virus infection. J. Clin. Microbiol. 35(1), 234–238 (1997)

    Google Scholar 

  25. Augasta, G.M., Kathirvalavakumar, T.: Pruning algorithms of neural networks – a comparative study. Cent. Eur. J. Comput. Sci. 3(3), 105–115 (2003)

    Google Scholar 

  26. www.india.com/news/india/dengue-outbreak/amp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pandiselvam Pandiyarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandiyarajan, P., Thangairulappan, K. (2018). Classification of Dengue Gene Expression Using Entropy-Based Feature Selection and Pruning on Neural Network. In: Abraham, A., Muhuri, P., Muda, A., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2017. Advances in Intelligent Systems and Computing, vol 736. Springer, Cham. https://doi.org/10.1007/978-3-319-76348-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76348-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76347-7

  • Online ISBN: 978-3-319-76348-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics