Abstract
Biohybrid systems are promising solutions in micro- and nanobiotechnology due to the possibility to combine exciting biological properties of living microorganisms/cells (e.g. sensing and taxis mechanisms), and the controllability of man-made microstructures. Here we present the development of tubular and helical spermbots, a concept that refers to a sperm-based microrobot. The recent achievements include the capture, guidance and release of motile and immotile sperm cells by artificial magnetic microstructures (microtubes, microhelices or four-armed microtubes). These approaches are interesting for potential applications in in vivo assisted fertilization and targeted drug delivery. The characteristics, challenges and possibilities are discussed in detail throughout this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Smith, E.J., Schulze, S., Kiravittaya, S., Mei, Y., Sanchez, S., Schmidt, O.G.: Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. Nano Lett. 11, 4037–4042 (2011). doi:10.1021/nl1036148
Zhao, G., Stuart, E.J.E., Pumera, M.: Enhanced diffusion of pollutants by self-propulsion. Phys. Chem. Chem. Phys. 13, 12755–12757 (2011). doi:10.1039/c1cp21237k
Wang, W., Li, S., Mair, L., Ahmed, S., Huang, T.J., Mallouk, T.E.: Acoustic propulsion of nanorod motors inside living cells. Angew. Chemie Int. Ed. 53, 3201–3204 (2014). doi:10.1002/anie.201309629
Ghost, A., Fischer, P.: Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009). doi:10.1021/nl900186w
Tottori, S., Zhang, L., Qiu, F., Krawczyk, K.K., Franco-Obregõn, A., Nelson, B.J.: Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012). doi:10.1002/adma.201103818
Loget, G., Kuhn, A.: Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2, 1–6 (2011). doi:10.1038/ncomms1550
Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S., Schmidt, O.G.: Self-propelled nanotools. ACS Nano 6, 1751–1756 (2012). doi:10.1021/nn204762w
Srivastava, S.K., Medina-Sánchez, M., Koch, B., Schmidt, O.G.: Medibots: dual-action biogenic microdaggers for single-cell surgery and drug release. Adv. Mater. 28, 832–837 (2016). doi:10.1002/adma.201504327
Balasubramanian, S., Kagan, D., Jack Hu, C.M., Campuzano, S., Lobo‐Castañon, M.J., Lim, N., Kang, D.Y., Zimmerman, M., Zhang, L., Wang, J.: Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chemie - Int. Ed. 50, 4161–4164 (2011). doi:10.1002/anie.201100115
Gao, W., Dong, R., Thamphiwatana, S., Li, J., Gao, W., Zhang, L., Wang, J.: Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015). doi:10.1021/nn507097k
Khalil, I.S.M., Dijkslag, H.C., Abelmann, L., Misra, S.: MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl. Phys. Lett. 104, 223701 (2014). doi:10.1063/1.4880035
Gao, W., Feng, X., Pei, A., Kane, C.R., Tam, R., Hennessy, C., Wang, J.: Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14, 305–310 (2014). doi:10.1021/nl404044d
Singleton, J., Diller, E., Andersen, T., Regnier, S., Sitti, M.: Micro-scale propulsion using multiple flexible artificial flagella. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1687–1692 (2011). doi:10.1109/IROS.2011.6048742
Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A.: A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5, 1–8 (2014). doi:10.1038/ncomms4081
Xi, J., Schmidt, J.J., Montemagno, C.D.: Self-assembled microdevices driven by muscle. Nat. Mater. 4, 180–184 (2005). doi:10.1038/nmat1308
Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M.P., Mecarini, F., De Angelis, F., Di Fabrizio, E.: Bacterial ratchet motors. Proc. Natl. Acad. Sci. 107, 9541–9545 (2010). doi:10.1073/pnas.0910426107
Darnton, N., Turner, L., Breuer, K., Berg, H.C.: Moving fluid with bacterial carpets. Biophys. J. 86, 1863–1870 (2004). doi:10.1016/S0006-3495(04)74253-8
Martel, S.: Bacterial microsystems and microrobots. Biomed. Microdevices 14, 1033–1045 (2012). doi:10.1007/s10544-012-9696-x
Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., Pouponneau, P.: Flagellated Magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J. Robot. Res. 28, 571–582 (2009). doi:10.1177/0278364908100924
Pouponneau, P., Leroux, J.C., Soulez, G., Gaboury, L., Martel, S.: Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32, 3481–3486 (2011). doi:10.1016/j.biomaterials.2010.12.059
Martel, S., Tremblay, C.C., Ngakeng, S., Langlois, G.: Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233904 (2006). doi:10.1063/1.2402221
Kim, D., Liu, A., Diller, E., Sitti, M.: Chemotactic steering of bacteria propelled microbeads. Biomed. Microdevices 14, 1009–1017 (2012). doi:10.1007/s10544-012-9701-4
Zhuang, J., Wright Carlsen, R., Sitti, M.: pH-taxis of biohybrid microsystems. Sci. Rep. 5, 11403 (2015). doi:10.1038/srep11403
Steager, E.B., Sakar, M.S., Kim, D.H., Kumar, V., Pappas, G.J., Kim, M.J.: Electrokinetic and optical control of bacterial microrobots. J. Micromech. Microeng. 21, 35001 (2011). doi:10.1088/0960-1317/21/3/035001
Magdanz, V., Medina‐Sánchez, M., Schwarz, L., Xu, H., Elgeti, J., Schmidt, O.G.: Spermatozoa as functional components of robotic microswimmers. Adv. Mater. 1–18 (2017). doi:10.1002/ADMA.201606301
Magdanz, V., Sanchez, S., Schmidt, O.G.: Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 25, 6581–6588 (2013). doi:10.1002/adma.201302544
Medina-Sánchez, M., Schwarz, L., Meyer, A.K., Hebenstreit, F., Schmidt, O.G.: Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2015). doi:10.1021/acs.nanolett.5b04221
Sato, Y., Tajima, A., Tsunematsu, K., Nozawa, S., Yoshiike, M., Koh, E., Kanaya, J., Namiki, M., Matsumiya, K., Tsujimura, A., Komatsu, K., Itoh, N., Eguchi, J., Imoto, I., Yamauchi, A., Iwamoto, T.: An association study of four candidate loci for human male fertility traits with male infertility. Hum. Reprod. 30, 1510–1514 (2015). doi:10.1093/humrep/dev088
Magdanz, V., Medina-Sánchez, M., Chen, Y., Guix, M., Schmidt, O.G.: How to Improve Spermbot Performance. Adv. Funct. Mater. 25, 2763–2770 (2015). doi:10.1002/adfm.201500015
Khalil, I.S.M., Magdanz, V., Sanchez, S., Schmidt, O.G., Misra, S.: Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot. J. Micro-Bio Robot. 9(3-4), 79–86 (2014)
Magdanz, V., Guix, M., Hebenstreit, F., Schmidt, O.G.: Dynamic polymeric microtubes for the remote-controlled capture, guidance, and release of sperm cells. Adv. Mater. 28, 4048–4089 (2016). doi:10.1002/adma.201505487
Jeyendran, R.S., Van der Ven, H.H., Perez-Pelaez, M., Crabo, B.G., Zaneveld, L.J.: Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 70, 219–228 (1984). doi:10.1530/jrf.0.0700219
Xu, H., Medina-Sánchez, M., Magdanz, V., Schwarz, L., Hebenstreit, F., Schmidt, O.G.: Sperm-hybrid micromotor for drug delivery in the female reproductive tract. arXiv:1703.08510 (2017)
Khalil, I.S.M., Magdanz, V., Sanchez, S., Schmidt, O.G., Misra, S.: Three-dimensional closed-loop control of self-propelled microjets. Appl. Phys. Lett. 103, 172404/1-5 (2013).
Kruger, R.A., Kuzmiak, C.M., Lam, R.B., Reinecke, D.R., Del Rio, S.P., Steed, D.: Dedicated 3D photoacoustic breast imaging. Med. Phys. 40, 113301 (2013). doi:10.1118/1.4824317
Neuschmelting, V., Lockau, H., Ntziachristos, V., Grimm, J., Kircher, M.F.: Lymph node micrometastases and in-transit metastases from melanoma: in vivo detection with multispectral optoacoustic imaging in a mouse model. Radiology 280, 137–150 (2016)
Comenge, J., Fragueiro, O., Sharkey, J., Taylor, A., Held, M., Burton, N.C., Park, B.K., Wilm, B., Murray, P., Brust, M., Lévy, R.: Preventing plasmon coupling between gold nanorods improves the sensitivity of photoacoustic detection of labeled stem cells in vivo. ACS Nano 10, 7106–7116 (2016). doi:10.1021/acsnano.6b03246
Tu, Y., Peng, F., André, A.A., Men, Y., Srinivas, M., Wilson, D.A.: Biodegradable hybrid stomatocyte nanomotors for drug delivery, ACS Nano. (2017). doi:10.1021/acsnano.6b08079
Chen, C., Karshalev, E., Li, J., Soto, F., Castillo, R., Campos, I., Mou, F., Guan, J., Wang, J.: Transient micromotors that disappear when no longer needed. ACS Nano 10, 10389–10396 (2016). doi:10.1021/acsnano.6b06256
Medina-Sánchez, M., Schmidt, O.G.: Medical microbots need better imaging and control. Nature 545, 406–408 (2017)
Vizsnyiczai, G., Frangipane, G., Maggi, C., Saglimbeni, F., Bianchi, S., Di Leonardo, R.: Light controlled 3D micromotors powered by bacteria. Nat. Commun. 8, 15974 (2017). doi:10.1038/ncomms15974
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Medina-Sánchez, M., Magdanz, V., Schwarz, L., Xu, H., Schmidt, O.G. (2017). Spermbots: Concept and Applications. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-63537-8_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63536-1
Online ISBN: 978-3-319-63537-8
eBook Packages: Computer ScienceComputer Science (R0)