[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Spermbots: Concept and Applications

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

  • 4786 Accesses

Abstract

Biohybrid systems are promising solutions in micro- and nanobiotechnology due to the possibility to combine exciting biological properties of living microorganisms/cells (e.g. sensing and taxis mechanisms), and the controllability of man-made microstructures. Here we present the development of tubular and helical spermbots, a concept that refers to a sperm-based microrobot. The recent achievements include the capture, guidance and release of motile and immotile sperm cells by artificial magnetic microstructures (microtubes, microhelices or four-armed microtubes). These approaches are interesting for potential applications in in vivo assisted fertilization and targeted drug delivery. The characteristics, challenges and possibilities are discussed in detail throughout this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith, E.J., Schulze, S., Kiravittaya, S., Mei, Y., Sanchez, S., Schmidt, O.G.: Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. Nano Lett. 11, 4037–4042 (2011). doi:10.1021/nl1036148

    Article  Google Scholar 

  2. Zhao, G., Stuart, E.J.E., Pumera, M.: Enhanced diffusion of pollutants by self-propulsion. Phys. Chem. Chem. Phys. 13, 12755–12757 (2011). doi:10.1039/c1cp21237k

    Article  Google Scholar 

  3. Wang, W., Li, S., Mair, L., Ahmed, S., Huang, T.J., Mallouk, T.E.: Acoustic propulsion of nanorod motors inside living cells. Angew. Chemie Int. Ed. 53, 3201–3204 (2014). doi:10.1002/anie.201309629

    Article  Google Scholar 

  4. Ghost, A., Fischer, P.: Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009). doi:10.1021/nl900186w

    Article  Google Scholar 

  5. Tottori, S., Zhang, L., Qiu, F., Krawczyk, K.K., Franco-Obregõn, A., Nelson, B.J.: Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012). doi:10.1002/adma.201103818

    Article  Google Scholar 

  6. Loget, G., Kuhn, A.: Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2, 1–6 (2011). doi:10.1038/ncomms1550

    Article  Google Scholar 

  7. Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S., Schmidt, O.G.: Self-propelled nanotools. ACS Nano 6, 1751–1756 (2012). doi:10.1021/nn204762w

    Article  Google Scholar 

  8. Srivastava, S.K., Medina-Sánchez, M., Koch, B., Schmidt, O.G.: Medibots: dual-action biogenic microdaggers for single-cell surgery and drug release. Adv. Mater. 28, 832–837 (2016). doi:10.1002/adma.201504327

    Article  Google Scholar 

  9. Balasubramanian, S., Kagan, D., Jack Hu, C.M., Campuzano, S., Lobo‐Castañon, M.J., Lim, N., Kang, D.Y., Zimmerman, M., Zhang, L., Wang, J.: Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chemie - Int. Ed. 50, 4161–4164 (2011). doi:10.1002/anie.201100115

  10. Gao, W., Dong, R., Thamphiwatana, S., Li, J., Gao, W., Zhang, L., Wang, J.: Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015). doi:10.1021/nn507097k

    Article  Google Scholar 

  11. Khalil, I.S.M., Dijkslag, H.C., Abelmann, L., Misra, S.: MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl. Phys. Lett. 104, 223701 (2014). doi:10.1063/1.4880035

    Article  Google Scholar 

  12. Gao, W., Feng, X., Pei, A., Kane, C.R., Tam, R., Hennessy, C., Wang, J.: Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14, 305–310 (2014). doi:10.1021/nl404044d

    Article  Google Scholar 

  13. Singleton, J., Diller, E., Andersen, T., Regnier, S., Sitti, M.: Micro-scale propulsion using multiple flexible artificial flagella. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1687–1692 (2011). doi:10.1109/IROS.2011.6048742

  14. Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A.: A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5, 1–8 (2014). doi:10.1038/ncomms4081

    Google Scholar 

  15. Xi, J., Schmidt, J.J., Montemagno, C.D.: Self-assembled microdevices driven by muscle. Nat. Mater. 4, 180–184 (2005). doi:10.1038/nmat1308

    Article  Google Scholar 

  16. Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M.P., Mecarini, F., De Angelis, F., Di Fabrizio, E.: Bacterial ratchet motors. Proc. Natl. Acad. Sci. 107, 9541–9545 (2010). doi:10.1073/pnas.0910426107

    Article  Google Scholar 

  17. Darnton, N., Turner, L., Breuer, K., Berg, H.C.: Moving fluid with bacterial carpets. Biophys. J. 86, 1863–1870 (2004). doi:10.1016/S0006-3495(04)74253-8

    Article  Google Scholar 

  18. Martel, S.: Bacterial microsystems and microrobots. Biomed. Microdevices 14, 1033–1045 (2012). doi:10.1007/s10544-012-9696-x

    Article  Google Scholar 

  19. Martel, S., Mohammadi, M., Felfoul, O., Lu, Z., Pouponneau, P.: Flagellated Magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J. Robot. Res. 28, 571–582 (2009). doi:10.1177/0278364908100924

    Article  Google Scholar 

  20. Pouponneau, P., Leroux, J.C., Soulez, G., Gaboury, L., Martel, S.: Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32, 3481–3486 (2011). doi:10.1016/j.biomaterials.2010.12.059

    Article  Google Scholar 

  21. Martel, S., Tremblay, C.C., Ngakeng, S., Langlois, G.: Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233904 (2006). doi:10.1063/1.2402221

    Article  Google Scholar 

  22. Kim, D., Liu, A., Diller, E., Sitti, M.: Chemotactic steering of bacteria propelled microbeads. Biomed. Microdevices 14, 1009–1017 (2012). doi:10.1007/s10544-012-9701-4

    Article  Google Scholar 

  23. Zhuang, J., Wright Carlsen, R., Sitti, M.: pH-taxis of biohybrid microsystems. Sci. Rep. 5, 11403 (2015). doi:10.1038/srep11403

    Article  Google Scholar 

  24. Steager, E.B., Sakar, M.S., Kim, D.H., Kumar, V., Pappas, G.J., Kim, M.J.: Electrokinetic and optical control of bacterial microrobots. J. Micromech. Microeng. 21, 35001 (2011). doi:10.1088/0960-1317/21/3/035001

    Article  Google Scholar 

  25. Magdanz, V., Medina‐Sánchez, M., Schwarz, L., Xu, H., Elgeti, J., Schmidt, O.G.: Spermatozoa as functional components of robotic microswimmers. Adv. Mater. 1–18 (2017). doi:10.1002/ADMA.201606301

  26. Magdanz, V., Sanchez, S., Schmidt, O.G.: Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 25, 6581–6588 (2013). doi:10.1002/adma.201302544

    Article  Google Scholar 

  27. Medina-Sánchez, M., Schwarz, L., Meyer, A.K., Hebenstreit, F., Schmidt, O.G.: Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2015). doi:10.1021/acs.nanolett.5b04221

    Article  Google Scholar 

  28. Sato, Y., Tajima, A., Tsunematsu, K., Nozawa, S., Yoshiike, M., Koh, E., Kanaya, J., Namiki, M., Matsumiya, K., Tsujimura, A., Komatsu, K., Itoh, N., Eguchi, J., Imoto, I., Yamauchi, A., Iwamoto, T.: An association study of four candidate loci for human male fertility traits with male infertility. Hum. Reprod. 30, 1510–1514 (2015). doi:10.1093/humrep/dev088

    Article  Google Scholar 

  29. Magdanz, V., Medina-Sánchez, M., Chen, Y., Guix, M., Schmidt, O.G.: How to Improve Spermbot Performance. Adv. Funct. Mater. 25, 2763–2770 (2015). doi:10.1002/adfm.201500015

    Article  Google Scholar 

  30. Khalil, I.S.M., Magdanz, V., Sanchez, S., Schmidt, O.G., Misra, S.: Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot. J. Micro-Bio Robot. 9(3-4), 79–86 (2014)

    Article  Google Scholar 

  31. Magdanz, V., Guix, M., Hebenstreit, F., Schmidt, O.G.: Dynamic polymeric microtubes for the remote-controlled capture, guidance, and release of sperm cells. Adv. Mater. 28, 4048–4089 (2016). doi:10.1002/adma.201505487

    Article  Google Scholar 

  32. Jeyendran, R.S., Van der Ven, H.H., Perez-Pelaez, M., Crabo, B.G., Zaneveld, L.J.: Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 70, 219–228 (1984). doi:10.1530/jrf.0.0700219

    Article  Google Scholar 

  33. Xu, H., Medina-Sánchez, M., Magdanz, V., Schwarz, L., Hebenstreit, F., Schmidt, O.G.: Sperm-hybrid micromotor for drug delivery in the female reproductive tract. arXiv:1703.08510 (2017)

  34. Khalil, I.S.M., Magdanz, V., Sanchez, S., Schmidt, O.G., Misra, S.: Three-dimensional closed-loop control of self-propelled microjets. Appl. Phys. Lett. 103, 172404/1-5 (2013).

    Google Scholar 

  35. Kruger, R.A., Kuzmiak, C.M., Lam, R.B., Reinecke, D.R., Del Rio, S.P., Steed, D.: Dedicated 3D photoacoustic breast imaging. Med. Phys. 40, 113301 (2013). doi:10.1118/1.4824317

    Article  Google Scholar 

  36. Neuschmelting, V., Lockau, H., Ntziachristos, V., Grimm, J., Kircher, M.F.: Lymph node micrometastases and in-transit metastases from melanoma: in vivo detection with multispectral optoacoustic imaging in a mouse model. Radiology 280, 137–150 (2016)

    Article  Google Scholar 

  37. Comenge, J., Fragueiro, O., Sharkey, J., Taylor, A., Held, M., Burton, N.C., Park, B.K., Wilm, B., Murray, P., Brust, M., Lévy, R.: Preventing plasmon coupling between gold nanorods improves the sensitivity of photoacoustic detection of labeled stem cells in vivo. ACS Nano 10, 7106–7116 (2016). doi:10.1021/acsnano.6b03246

    Article  Google Scholar 

  38. Tu, Y., Peng, F., André, A.A., Men, Y., Srinivas, M., Wilson, D.A.: Biodegradable hybrid stomatocyte nanomotors for drug delivery, ACS Nano. (2017). doi:10.1021/acsnano.6b08079

  39. Chen, C., Karshalev, E., Li, J., Soto, F., Castillo, R., Campos, I., Mou, F., Guan, J., Wang, J.: Transient micromotors that disappear when no longer needed. ACS Nano 10, 10389–10396 (2016). doi:10.1021/acsnano.6b06256

    Article  Google Scholar 

  40. Medina-Sánchez, M., Schmidt, O.G.: Medical microbots need better imaging and control. Nature 545, 406–408 (2017)

    Article  Google Scholar 

  41. Vizsnyiczai, G., Frangipane, G., Maggi, C., Saglimbeni, F., Bianchi, S., Di Leonardo, R.: Light controlled 3D micromotors powered by bacteria. Nat. Commun. 8, 15974 (2017). doi:10.1038/ncomms15974

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Medina-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Medina-Sánchez, M., Magdanz, V., Schwarz, L., Xu, H., Schmidt, O.G. (2017). Spermbots: Concept and Applications. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics