Abstract
Biohybrid robotics offers the possibility of compliant, bio-compatible actuation and adaptive behavioral flexibility via the use of muscles as robotic actuators and neural circuits as controllers. In this study, neuromuscular tissue circuits from Aplysia californica have been characterized and implemented on 3D-printed inchworm-inspired biohybrid robots, creating the first locomotive biohybrid robots with both organic actuation and organic motor-pattern control. Stimulation via the organic motor-controller is shown to result in higher muscle tension and faster device speeds as compared to external electrical stimulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cvetkovic, C., Raman, R., Chan, V., Williams, B.J., Tolish, M., Bajaj, P., Sakar, M.S., Asada, H.H., Saif, M.T.A., Bashir, R.: Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111(28), 10125–10130 (2014)
Webster, V.A., Hawley, E.L., Akkus, O., Chiel, H.J., Quinn, R.D.: Effect of actuating cell source on locomotion of organic living machines with electrocompacted collagen skeleton. Bioinspiration Biomim. 11(3), 036012 (2016)
Nawroth, J.C., Lee, H., Feinberg, A.W., Ripplinger, C.M., McCain, M.L., Grosberg, A., Dabiri, J.O., Parker, K.K.: A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30(8), 792–797 (2012)
Park, S.-J., Gazzola, M., Park, K.S., Park, S., Di Santo, V., Blevins, E.L., Lind, J.U., Campbell, P.H., Dauth, S., Capulli, A.K., Pasqualini, F.S., Ahn, S., Cho, A., Yuan, H., Maoz, B.M., Vijaykumar, R., Choi, J.-W., Deisseroth, K., Lauder, G.V., Mahadevan, L., Parker, K.K.: Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353(6295), 158–162 (2016)
Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A.: A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5(3081) (2014)
Ferrández, J.M., Lorente, V., DelaPaz, F., Cuadra, J.M., Álvarez-Sánchez, J.R., Fernández, E.: A biological neuroprocessor for robotic guidance using a center of area method. Neurocomputing 74(8), 1229–1236 (2011)
De Santos, D., Lorente, V., De La Paz, F., Manuel Cuadra, J., Lvarez-Snchez, J.R., Fernández, E., Ferrández, J.M., Ferrández, J.M.: A client-server architecture for remotely controlling a robot using a closed-loop system with a biological neuroprocessor. Robot. Auton. Syst. 58(12), 1223–1230 (2010)
Wilkinson, S.: ‘Gastrobots’ - benefits and challenges of microbial fuel cells in food powered robot applications. Auton. Robot. 9(2), 99–111 (2000)
Philamore, H., Rossiter, J., Stinchcombe, A., Ieropoulos, I.: Row-bot: an energetically autonomous artificial water boatman. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3888–3893 (2015)
Ieropoulos, I., Melhuish, C., Greenman, J., Horsfield, I.: EcoBot-II: an artificial agent with a natural metabolism. Int. J. Adv. Robot. Syst. 2(4), 295–300 (2005)
Webster, V.A., Chapin, K.J., Hawley, E.L., Patel, J.M., Akkus, O., Chiel, H.J., Quinn, R.D.: Aplysia californica as a novel source of material for biohybrid robots and organic machines. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 365–374. Springer, Cham (2016). doi:10.1007/978-3-319-42417-0_33
Lu, H., McManus, J.M., Cullins, M.J., Chiel, H.J.: Preparing the periphery for a subsequent behavior: motor neuronal activity during biting generates little force but prepares a retractor muscle to generate larger forces during swallowing in Aplysia. J. Neurosci. 35(12), 5051–5066 (2015)
Hurwitz, I., Neustadter, D., Morton, D.W., Chiel, H.J., Susswein, A.J.: Activity patterns of the B31/B32 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding movements in Aplysia californica. J. Neurophysiol. 75(4), 1309–1326 (1996)
Susswein, A.J., Rosen, S.C., Gapon, S., Kupfermann, I.: Characterization of buccal motor programs elicited by a cholinergic agonist applied to the cerebral ganglion of Aplysia californica. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 179(4), 509–524 (1996)
Shaw, K.M., Lyttle, D.N., Gill, J.P., Cullins, M.J., Mcmanus, J.M., Lu, H., Thomas, P.J., Chiel, H.J.: The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior. J. Comput. Neurosci. 38, 25–51 (2015)
Horchler, A.D., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinspiration Biomim. 10(2), 26001 (2015)
Yu, S.N., Crago, P.E., Chiel, H.J.: Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia. Biol. Cybern. 81, 505–513 (1999)
Mortimer, J.T.: Motor Prostheses In: Comprehensive Physiology 2011, Supplement 2: Handbook of Physiology, The Nervous System, Motor Control, pp. 155–187 (1981)
Acknowledgments
The authors would like to thank Yanjun Zhang for assistance in actuator characterization. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0951783 and a GAANN Fellowship (Grant No. P200A150316). This study was also funded in part by grants from the National Science Foundation (Grant No. DMR-1306665), and the National Institute of Health (Grant No. R01 AR063701).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Webster, V.A. et al. (2017). 3D-Printed Biohybrid Robots Powered by Neuromuscular Tissue Circuits from Aplysia californica . In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-63537-8_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63536-1
Online ISBN: 978-3-319-63537-8
eBook Packages: Computer ScienceComputer Science (R0)