Abstract
In this paper, we propose a deep learning approach for breast lesions classification, by processing breast images obtained using an innovative acquisition system, the Tomosynthesis, a medical instrument able to acquire high-resolution images using a lower radiographic dose than normal Computed Tomography (CT). The acquired images were processed to obtain Regions Of Interest (ROIs) containing lesions of different categories. Subsequently, several pre-trained Convolutional Neural Network (CNN) models were evaluated as feature extractors and coupled with non-neural classifiers for discriminate among the different categories of lesions. Results showed that the use of CNNs as feature extractor and the subsequent classification using a non-neural classifier reaches high values of Accuracy, Sensitivity and Specificity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vestito, A., Mangieri, F.F., Gatta, G., Moschetta, M., Turi, B., Ancona, A.: Breast carcinoma in elderly women. Our experience. Il giornale di chirurgia 32, 411–416 (2011)
Korhonen, K.E., Weinstein, S.P., McDonald, E.S., Conant, E.F.: Strategies to increase cancer detection: review of true-positive and false-negative results at digital breast tomosynthesis screening. RadioGraphics 36, 1954–1965 (2016)
Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., Moschetta, M.: An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1385–1392. ACM (2016)
Bevilacqua, V., Pietroleonardo, N., Triggiani, V., Brunetti, A., Di Palma, A.M., Rossini, M., Gesualdo, L.: An innovative neural network framework to classify blood vessels and tubules based on Haralick features evaluated in histological images of kidney biopsy. Neurocomputing 228, 143–153 (2017)
Cha, K.H., Hadjiiski, L., Samala, R.K., Chan, H.P., Caoili, E.M., Cohan, R.H.: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 43, 1882–1896 (2016)
Niklason, L.T., Christian, B.T., Niklason, L.E., Kopans, D.B., Castleberry, D.E., Opsahl-Ong, B., Landberg, C.E., Slanetz, P.J., Giardino, A.A., Moore, R.: Digital tomosynthesis in breast imaging. Radiology 205, 399–406 (1997)
Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18, 1049–1075 (1999)
Lim, J.S.: Two-Dimensional Signal and Image Processing, 710 p. Prentice Hall, Englewood Cliffs (1990)
Kom, G., Tiedeu, A., Kom, M.: Automated detection of masses in mammograms by local adaptive thresholding. Comput. Biol. Med. 37, 37–48 (2007)
Carnimeo, L., Bevilacqua, V., Cariello, L., Mastronardi, G.: Retinal vessel extraction by a combined neural network–wavelet enhancement method. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 1106–1116. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04020-7_118
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)
Bevilacqua, V., Mastronardi, G., Piazzolla, A.: An evolutionary method for model-based automatic segmentation of lower abdomen CT images for radiotherapy planning. Appl. Evol. Comput. 6024, 320–327 (2010)
Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, pp. 958–962. Citeseer (2003)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9. IEEE (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. NIPS (2012)
Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets, pp. 1–11 (2014). arXiv preprint arXiv:1405.3531
Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)
Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7_15
Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29, 103–130 (1997)
Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World scientific, River Edge (2014)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bevilacqua, V. et al. (2017). A Supervised Breast Lesion Images Classification from Tomosynthesis Technique. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-63312-1_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63311-4
Online ISBN: 978-3-319-63312-1
eBook Packages: Computer ScienceComputer Science (R0)