Abstract
The 0–1 knapsack problem (0–1KP) is a well-known combinatorial optimization problem. It is an NP-hard problem which plays significant roles in many real life applications. Dragonfly algorithm (DA) a novel swarm intelligence optimization algorithm, inspired by the nature of static and dynamic swarming behaviors of dragonflies. DA has demonstrated excellent performance in solving multimodal continuous problems and engineering optimization problems. This paper proposes a binary version of dragonfly algorithm (BDA) to solve 0–1 knapsack problem. Experimental results have proven the superior performance of BDA compared with other algorithms in literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hu, T.C., Kahng, A.B.: The knapsack problem. In: Hu, T.C., Kahng, Andrew B. (eds.) Linear and Integer Programming Made Easy, pp. 87–101. Springer, Cham (2016). doi:10.1007/978-3-319-24001-5_8
Martello, S., Pisinger, D., Toth, P.: New trends in exact algorithms for the 0–1 knapsack problem. Eur. J. Oper. Res. 123(2), 325–332 (2000)
Plateau, G., Nagih, A.: 0–1 knapsack problems. In: Paradigms of Combinatorial Optimization, 2nd edn., pp. 215–242 (2010)
Kulkarni, A.J., Krishnasamy, G., Abraham, A.: Solution to 0–1 knapsack problem using cohort intelligence algorithm. In: Kulkarni, A.J., Krishnasamy, G., Abraham, A. (eds.) Cohort Intelligence: A Socio-inspired Optimization Method. ISRL, vol. 114, pp. 55–74. Springer, Cham (2017). doi:10.1007/978-3-319-44254-9_5
Zhou, Y., Bao, Z., Luo, Q., Zhang, S.: A complex-valued encoding wind driven optimization for the 0–1 knapsack problem. Appl. Intell. 1–19 (2016)
Lv, J., Wang, X., Huang, M., Cheng, H., Li, F.: Solving 0-1 knapsack problem by greedy degree and expectation efficiency. Appl. Soft Comput. 41, 94–103 (2016)
Zhou, Y., Chen, X., Zhou, G.: An improved monkey algorithm for a 0-1 knapsack problem. Appl. Soft Comput. 38, 817–830 (2016)
Lim, T.Y., Al-Betar, M.A., Khader, A.T.: Taming the 0/1 knapsack problem with monogamous pairs genetic algorithm. Expert Syst. Appl. 54, 241–250 (2016)
Nguyen, P.H., Wang, D., Truong, T.K.: A new hybrid particle swarm optimization and greedy for 0-1 knapsack problem. Indones. J. Electr. Eng. Comput. Sci. 1(3), 411–418 (2016)
Pavithr, R.S.: Quantum inspired social evolution (QSE) algorithm for 0–1 knapsack problem. In: Swarm and Evolutionary Computation (2016, in press)
Lin, C.J., Chern, M.S., Chih, M.: A binary particle swarm optimization based on the surrogate information with proportional acceleration coefficients for the 0-1 multidimensional knapsack problem. J. Indu. Prod. Eng. 33(2), 77–102 (2016)
Truong, T.K., Li, K., Xu, Y., Ouyang, A., Nguyen, T.T.: Solving 0-1 knapsack problem by artificial chemical reaction optimization algorithm with a greedy strategy. J. Intell. Fuzzy Syst. 28(5), 2179–2186 (2015)
Kong, X., Gao, L., Ouyang, H., Li, S.: A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Expert Syst. Appl. 42(12), 5337–5355 (2015)
Yan, C., Gao, S., Luo, H., Hu, Z.: A hybrid algorithm based on tabu search and chemical reaction optimization for 0-1 knapsack problem. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI 2015. LNCS, vol. 9141, pp. 229–237. Springer, Cham (2015). doi:10.1007/978-3-319-20472-7_25
Du, D.-P., Zu, Y.-R.: Greedy strategy based self-adaption ant colony algorithm for 0/1 knapsack problem. In: Park, J.J., Pan, Y., Chao, H.-C., Yi, G. (eds.) Ubiquitous Computing Application and Wireless Sensor. LNEE, vol. 331, pp. 663–670. Springer, Dordrecht (2015). doi:10.1007/978-94-017-9618-7_70
Zhou, Y., Li, L., Ma, M.: A complex-valued encoding bat algorithm for solving 0–1 knapsack problem. Neural Process. Lett. 44(2), 407–430 (2016)
Razavi, S.F., Sajedi, H.: Cognitive discrete gravitational search algorithm for solving 0-1 knapsack problem. J. Intell. Fuzzy Syst. 29(5), 2247–2258 (2015)
Feng, Y., Jia, K., He, Y.: An improved hybrid encoding cuckoo search algorithm for 0-1 knapsack problems. Comput. Intell. Neurosci. 2014, 1 (2014)
Cheng, K., Ma, L.: Artificial glowworm swarm optimization algorithm for 0-1 knapsack problem. Appl. Res. Comput. 4, 009 (2013)
Fang, Z., Yu-Lei, M., Jun-Peng, Z.: Solving 0-1 knapsack problem based on immune clonal algorithm and ant colony algorithm. In: Yang, G. (ed.) Proceedings of the 2012 International Conference on Communication, Electronics and Automation Engineering. AISC, vol. 181, pp. 1047–1053. Springer, Heidelberg (2013). doi:10.1007/978-3-642-31698-2_148
Gupta, M.: A fast and efficient genetic algorithm to solve 0-1 Knapsack problem. Int. J. Digit. Appl. Contemp. Res 1(6), 1–5 (2013)
Layeb, A.: A hybrid quantum inspired harmony search algorithm for 0–1 optimization problems. J. Comput. Appl. Math. 253, 14–25 (2013)
Gherboudj, A., Layeb, A., Chikhi, S.: Solving 0-1 knapsack problems by a discrete binary version of cuckoo search algorithm. Int. J. Bio-Inspired Comput. 4(4), 229–236 (2012)
Zou, D., Gao, L., Li, S., Wu, J.: Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl. Soft Comput. 11(2), 1556–1564 (2011)
Gong, Q.Q., Zhou, Y.Q., Yang, Y.: Artificial glowworm swarm optimization algorithm for solving 0-1 knapsack problem. In: Advanced Materials Research, vol. 143, pp. 166–171. Trans Tech Publications (2011)
Layeb, A.: A novel quantum inspired cuckoo search for knapsack prob lems. Int. J. Bio-Inspired Comput. 3(5), 297–305 (2011)
Kong, M., Tian, P.: Apply the particle swarm optimization to the multidimensional knapsack problem. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 1140–1149. Springer, Heidelberg (2006). doi:10.1007/11785231_119
Xiang, W.L., An, M.Q., Li, Y.Z., He, R.C., Zhang, J.F.: A novel discrete global-best harmony search algorithm for solving 0-1 knapsack problems. Discret. Dyn. Nat. Soc. 2014, 19 p. (2014). Article no. 637412. http://dx.doi.org/10.1155/2014/637412
Changdar, C., Mahapatra, G.S., Pal, R.K.: An ant colony optimization approach for binary knapsack problem under fuzziness. Appl. Math. Comput. 223, 243–253 (2013)
Bansal, J.C., Deep, K.: A modified binary particle swarm optimization for knapsack problems. Appl. Math. Comput. 218(22), 11042–11061 (2012)
Ma, Y., Wan, J.: Improved hybrid adaptive genetic algorithm for solving knapsack problem. In: 2011 2nd International Conference on Intelligent Control and Information Processing (2011)
Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)
Acknowledgments
This work is supported by National Science Foundation of China under Grants Nos. 61563008; 61463007. Project of Guangxi Science Foundation under Grant No. 2016GXNSFAA380264.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Abdel-Basset, M., Luo, Q., Miao, F., Zhou, Y. (2017). Solving 0–1 Knapsack Problems by Binary Dragonfly Algorithm. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-63315-2_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63314-5
Online ISBN: 978-3-319-63315-2
eBook Packages: Computer ScienceComputer Science (R0)