[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lumbar Spine Discs Labeling Using Axial View MRI Based on the Pixels Coordinate and Gray Level Features

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Abstract

Disc herniation is a major reason for lower back pain (LBP), a health issue that affects a very high proportion of the UK population and is costing the UK government over £1.3 million per day in health care cost. Currently, the process to diagnose the cause of LBP involves examining a large number of Magnetic Resonance Images (MRI) but this process is both expensive in terms time and effort. Automatic labeling of lumbar disc pixels in the MRI to detect the herniation area will reduce the time to diagnose and detect the cause of LBP by the physicians. In this paper, we present a method for automatic labeling of the lumbar spine disc pixels in axial view MRI using pixels locations and gray level as features. Clinical MRIs are used for the training and testing of the method. The pixel classification accuracy and the quality of the reconstructed disc images are used as the main performance indicators for our method. Our experiments show that high level of classification accuracy of 91.1% and 98.9% can be achieved using Weighted KNN and Fine Gaussian SVM classifiers respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koh, J., Alomari, R.S., Chaudhary, V., Dhillon, G.: Lumbar spinal stenosis CAD from clinical MRM and MRI based on inter-and intra-context features with a two-level classifie. In: SPIE Medical Imaging, vol. 7963, pp. 796304-1–796304-8 (2011)

    Google Scholar 

  2. Waddell, G., Burton, A.K.: Occupational health guidelines for the management of low back pain at work: evidence review. Occup. Med. (Chic. Ill.) 51(2), 124–135 (2001)

    Article  Google Scholar 

  3. Gordon, R., Bloxham, S.: A systematic review of the effects of exercise and physical activity on non-specific chronic low back pain. Healthc. (Basel, Switz.) 4(2), 22 (2016)

    Google Scholar 

  4. Dixon, S.: Diagnostic imaging dataset annual statistical release 2013/14, pp. 1–27 (2014)

    Google Scholar 

  5. Royal College of Radiologists: 2015 Clinical Radiology UK Workforce Census (2016)

    Google Scholar 

  6. Al Kafri, A.S., Sudirman, S., Hussain, A.J., Fergus, P., Al-Jumeily, D., Al-Jumaily, M., Al-Askar, H.: A framework on a computer assisted and systematic methodology for detection of chronic lower back pain using artificial intelligence and computer graphics technologies. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2016. LNCS, vol. 9771, pp. 843–854. Springer, Cham (2016). doi:10.1007/978-3-319-42291-6_83

    Chapter  Google Scholar 

  7. Al-Jumeily, D., Iram, S., Vialatte, F.-B., Fergus, P., Hussain, A.: A novel method of early diagnosis of Alzheimer’s disease based on EEG signals. Sci. World J. 2015, 931387 (2015)

    Article  Google Scholar 

  8. Al-Jumeily, D., Hussain, A., Fergus, P.: Using adaptive neural networks to provide self-healing autonomic software. Int. J. Space-Based Situat. Comput. 5, 129–140 (2015)

    Article  Google Scholar 

  9. Taher, F., Werghi, N., Al-Ahmad, H.: Computer aided diagnosis system for early lung cancer detection. In: 2015 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 5–8 (2015)

    Google Scholar 

  10. Alomari, R.S., Corso, J.J., Chaudhary, V., Dhillon, G.: Automatic diagnosis of lumbar disc herniation with shape and appearance features from MRI. Prog. Biomed. Opt. Imaging 11, 76241A (2010)

    Google Scholar 

  11. Hussain, A.J., Fergus, P., Al-Askar, H., Al-Jumeily, D., Jager, F.: Dynamic neural network architecture inspired by the immune algorithm to predict preterm deliveries in pregnant women. Neurocomputing 151(P3), 963–974 (2015)

    Article  Google Scholar 

  12. Khalaf, M., Hussain, A.J., Keight, R., Al-Jumeily, D., Fergus, P., Keenan, R., Tso, P.: Machine learning approaches to the application of disease modifying therapy for sickle cell using classification models. Neurocomputing 228(February 2016), 154–164 (2016)

    Google Scholar 

  13. Lootus, M., Kadir, T., Zisserman, A.: Vertebrae detection and labelling in lumbar MR images. In: Yao, J., Klinder, T., Li, S. (eds.) Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 17, pp. 219–230. Springer, Cham (2014). doi:10.1007/978-3-319-07269-2_19

    Google Scholar 

  14. Freidman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

    Article  MATH  Google Scholar 

  15. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. In: Proceedings of 5th ACM-SIAM Symposium Discrete Algorithms, vol. 1, no. 212, pp. 573–582 (1994)

    Google Scholar 

  16. Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1000–1006 (1997)

    Google Scholar 

  17. Jiang, H., Qi, W., Liao, Q., Zhao, H., Lei, W., Guo, L., Lu, H.: Quantitative evaluation of lumbar disc herniation based on MRI image. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) ABD-MICCAI 2011. LNCS, vol. 7029, pp. 91–98. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28557-8_12

    Chapter  Google Scholar 

  18. Alomari, R.S., Corso, J.J., Chaudhary, V., Dhillon, G.: Automatic diagnosis of lumbar disc herniation with shape and appearance features from MRI. In: SPIE Medical Imaging, p. 76241A (2010)

    Google Scholar 

  19. Alomari, R.S., Corso, J.J., Chaudhary, V., Dhillon, G.: Lumbar spine disc herniation diagnosis with a joint shape model. In: Yao, J., Klinder, T., Li, S. (eds.) Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 17, pp. 87–98. Springer, Cham (2014). doi:10.1007/978-3-319-07269-2_8

    Google Scholar 

  20. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  21. Tan, P.-N., Steinbach, M., Kumar, V.: Classification: basic concepts, decision trees. Introd. Data Min. 67(17), 145–205 (2006)

    Google Scholar 

  22. Wu, X., Kumar, V., Ross, Q.J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  23. Bhatia, N., Author, C.: Survey of nearest neighbor techniques. (IJCSIS) Int. J. Comput. Sci. Inf. Secur. 8(2), 302–305 (2010)

    Google Scholar 

  24. Aggarwal, C.C. (ed.): Data Classification: Algorithms and Applications. CRC Press, Boca Raton (2014)

    Google Scholar 

  25. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: improving classification performance when training data is skewed. In: 2008 19th International Conferences on Pattern Recognition, no. March 2016, pp. 8–11 (2008)

    Google Scholar 

  26. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala S. Al Kafri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Al Kafri, A.S. et al. (2017). Lumbar Spine Discs Labeling Using Axial View MRI Based on the Pixels Coordinate and Gray Level Features. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics