[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Computation of the Euler Number of a 2-D Binary Image

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2016)

Abstract

A new method to compute the Euler number of a 2-D binary image is described in this paper. The method employs three comparisons unlike other proposals that utilize more comparisons. We present two variations, one useful for the case of images containing only 4-connected objects and one useful in the case of 8-connected objects. To numerically validate our method, we firstly apply it to a set of very simple examples; to demonstrate its applicability, we test it next with a set of images of different sizes and object complexities. To show competitiveness of our method against other proposals, we compare it in terms of processing times with some of the state-of-the-art-formulations reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, H.S., Sengupta, S.: Intelligent shape recognition for complex industrial tasks. IEEE Control Syst. Mag. 8(3), 23–30 (1988)

    Article  Google Scholar 

  2. Snidaro, L., Foresti, G.L.: Real-time thresholding with Euler numbers. Pattern Recogn. Lett. 24, 1533–1544 (2003)

    Article  MATH  Google Scholar 

  3. Lin, X., Ji, J., Gu, G.: The Euler number study of image and its application. In: Proceedings of 2nd IEEE Conference on Industrial Electronics and Applications (ICIEA 2007), pp. 910–912 (2007)

    Google Scholar 

  4. Al Faqheri, W., Mashohor, S.: A real-time Malaysian automatic license plate recognition (M-ALPR) using hybrid fuzzy. Int. J. Comput. Sci. Netw. Secur. 9(2), 333–340 (2009)

    Google Scholar 

  5. Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20(5), 551–561 (1971)

    Article  MATH  Google Scholar 

  6. Dyer, C.: Computing the Euler number of an image from its quadtree. Comput. Vis. Graph. Image Process. 13, 270–276 (1980)

    Article  Google Scholar 

  7. Bieri, H., Nef, W.: Algorithms for the Euler characteristic and related additive functionals of digital objects. Comput. Vis. Graph. Image Process. 28, 166–175 (1984)

    Article  MATH  Google Scholar 

  8. Bieri, H.: Computing the Euler characteristic and related additive functionals of digital objects from their bintree representation. Comput. Vis. Graph. Image Process. 40, 115–126 (1987)

    Article  MATH  Google Scholar 

  9. Chen, M.H., Yan, P.F.: A fast algorithm to calculate the Euler number for binary images. Pattern Recogn. Lett. 8(12), 295–297 (1988)

    Article  MATH  Google Scholar 

  10. Chiavetta, F.: Parallel computation of the Euler number via connectivity graph. Pattern Recogn. Lett. 14(11), 849–859 (1993)

    Article  MATH  Google Scholar 

  11. Díaz de León, J.L., Sossa-Azuela, J.H.: On the computation of the Euler number of a binary object. Pattern Recogn. 29(3), 471–476 (1996)

    Article  Google Scholar 

  12. Bribiesca, E.: Computation of the Euler number using the contact perimeter. Comput. Math Appl. 60, 136–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sossa, H., Cuevas, E., Zaldivar, D.: Computation of the Euler Number of a binary image composed of hexagonal cells. J. Appl. Res. Technol. 8(3), 340–351 (2010)

    Google Scholar 

  14. Sossa, H., Cuevas, E., Zaldivar, D.: Alternative way to compute the Euler Number of a binary image. J. Appl. Res. Technol. 9(3), 335–341 (2011)

    Google Scholar 

  15. Imiya, A., Eckhardt, U.: The Euler characteristics of discrete objects and discrete quasi-objects. Comput. Vis. Image Underst. 75(3), 307–318 (1999)

    Article  Google Scholar 

  16. Kiderlen, M.: Estimating the Euler characteristic of a planar set from a digital image. J. Vis. Commun. Image Represent. 17(6), 1237–1255 (2006)

    Article  Google Scholar 

  17. Di Zenzo, S., Cinque, L., Levialdi, S.: Run-based algorithms for binary image analysis and processing. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 83–89 (1996)

    Article  Google Scholar 

  18. Sossa, H., Cuevas, E., Zaldivar, D.: Computation of the Euler number of a binary image composed of hexagonal cells. JART 8(3), 340–351 (2010)

    Google Scholar 

  19. Sossa, H., Rubio, E., Peña, A., Cuevas, E., Santiago, R.: Alternative formulations to compute the binary shape euler number. IET-Comput. Vis. 8(3), 171–181 (2014)

    Article  Google Scholar 

  20. Yao, B., Wu, H., Yang, Y., Chao, Y., He, L.: An improvement on the euler number computing algorithm used in MATLAB. In: TECNON 2013, 2013 IEEE Region 10 Conference, 22–25 October 2013, Xi’an, China (2013)

    Google Scholar 

  21. He, L., Chao, Y., Suzuki, K.: A linear-time two-scan labelling algorithm. In: Proceedings of IEEE International Conference on Image Processing (ICIP 2007), San Antonio, TX, USA, September 2007, pp. V-241–V-244 (2007)

    Google Scholar 

  22. Feng He, L., Yan Chao, Y., Susuki, K.: An Algorithm for connected-component labeling, hole labeling and Euler number computing. J. Comput. Sci. Technol. 28(3), 468–478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, L., Chao, Y.: A very fast algorithm for simultaneously performing connected-component labeling and Euler number computing. IEEE Trans. Image Process. 24(9), 2725–2735 (2015)

    Article  MathSciNet  Google Scholar 

  24. Yao, B., He, L., Kang, S., Chao, Y., Zhao, X.: A novel bit–quad–based Euler number computing algorithm. SpringerPlus 4(735), 1–16 (2015)

    Google Scholar 

  25. Yao, B., Kang, S., Zhao, X., Chao, Y., He, L.: A graph-theory-based Euler number computing algorithm. In: Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, pp. 1206–1209, August 2015

    Google Scholar 

Download references

Acknowledgements

Humberto Sossa would like to thank IPN-CIC and CONACYT (projects SIP 20161126, and CONACYT under projects 155014 and 65 within the framework of call: Frontiers of Science 2015) for the economic support to carry out this research. Ángel Carreón thanks CONACYT for the economic support to carry out his Master studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Humberto Sossa-Azuela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sossa-Azuela, J.H., Carreón-Torres, Á.A., Santiago-Montero, R., Bribiesca-Correa, E., Petrilli-Barceló, A. (2017). Efficient Computation of the Euler Number of a 2-D Binary Image. In: Sidorov, G., Herrera-Alcántara, O. (eds) Advances in Computational Intelligence. MICAI 2016. Lecture Notes in Computer Science(), vol 10061. Springer, Cham. https://doi.org/10.1007/978-3-319-62434-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62434-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62433-4

  • Online ISBN: 978-3-319-62434-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics