Abstract
The paper presents the problem of control of the accuracy of forming elastic-deformable shafts with low rigidity and namely the control of the elasticdeformable state of semi-finished product with low rigidity through the effect of additional force factors under conditions of lateral bending, permitting the achievement of uniform stiffness of the shaft at the point of application of machining force, and consequently a significant increase of the accuracy of shaft formation in the course of machining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
1. Świć, A., Wołos, D., Litak, G.: Method of control of machining accuracy of low-rigidity elasticdeformable shafts. Latin American Journal of Solids and Structures. 11(2), 260–278 (2014)
2. Swic, A., Taranenko. W.: Adaptive control of machining accuracy of axial-symmetrical lowrigidity parts in elastic-deformable state. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 14 (3), 215–221 (2012)
3. Tlusty, J.: Manufacturing processes and equipment. Upper Sadde River, NJ: Prentice Hall, 2000.
4. Bajić, D., Celent, L., Jozić, S.: Modeling of the influence of cutting parameters on the surface roughness, tool wear and cutting force in face milling in off-line process control. Stroj Vestn-J Mech E. 58, 673–682 (2012)
5. Urbicain, G., Olvera, D., Fernández, A., Rodríguez, A., Tabernero, I., López de Lacalle, L.N.: Stability Lobes in Turning of Low Rigidity Components. Advanced Materials Research. 498, 231–236 (2012)
6. Świć, A., Draczew, A., Gola A.: Method of achieving accuracy of thermo-mechanical treatment of low-rigidity shafts. Advances in Science and Technology-Research Journal, 10 (29), 62–70 (2016)
7. Campa, F. J., de Lacalle, L.N.L., Urbikain, G., Ruiz, D.: Definition of cutting conditions for thin-to-thin milling of aerospace low rigidity parts. Proceedings of the ASME International Manufacturing Science and Engineering Conference 2008. 1, 359–368 (2008)
8. Ryu, S. H., Lee, H. S., Chu, C. N.: The form error prediction in side wall machining considering tool deflection. Int. J Mach Tools Manuf. 43, 731–737 (2003)
9. Ratchev, S., Liu, S., Huang, W. Becker, A.A.: Milling error prediction and compensation in machining of low-rigidity parts. Int J Mach Tools Manuf. 44 (15), 1629–1641 (2004)
10. Tian, L.Z., Wu J.H., Xiong Z.H., Ding H.: Active chatter suppression in turning of low-rigidity workpiece by system matching. Lect Notes in Art Intel. 9245, 609–618 (2015)
11. Qi, H., Tian, Y., Zhang, D.: Machining forces prediction for peripheral milling of low-rigidity component with curved geometry. Int J Adv Manuf Technol. 64, 1599–1610 (2013)
12. Campomanes, M. L., Altintas, Y.: An improved time domain simulation for dynamic milling at small radial immersions. Trans ASME, J Manuf Sci Eng. 125, 416–422 (2003)
13. Li, H., Shin, Y.C.: A comprehensive dynamic and milling simulation model. Trans ASME, J Manuf Sci Eng.128, 86–95 (2006)
14. Lorong, P., Coffignal, G., Cohen-Assouline, S.: Simulation du comportement dynamique d’un systeme usinant: modelisation de l’interaction outil/matiere en presence d’une piece flexible. Mec Ind. 9, 117–124 (2008)
15. Altintas, Y: Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge: Cambridge University Press (2000)
16. Chen C.K., Tsao Y.M.: A stability analysis of regenerative chatter in turning process without using tailstock. Int J Adv Manuf Technol. 29, 648–654 (2006)
17. Hassui, A., Diniz, A.E.: Correlating surface roughness and vibration on plunge cylindrical grinding of steel. Int J Mach Tools Manufac. 43, 855–862 (2003)
18. Świć, A., Wołos, D., Zubrzycki, J., Opielak, M., Gola, A., Taranenko, V.: Accuracy Control in the Machining of Low Rigidity Shafts. Applied Mechanics and Materials. 613, 357–367 (2014)
19. Litak, G., Rusinek, R., Teter, A.: Nonlinear analysis of experimental time series of a straight turning process. Meccanica. 39, 105–112 (2004)
20. Świć, A., Gola, A., Wołos, D., Opielak, M.: Micro-geometry Surface Modelling in the Process of Low-Rigidity Elastic-Deformable Shafts Turning. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 1–9 (2016)
21. Cardi, A.A., Firpi, H.A., Bement, M.T., Liang, S.Y.: Workpiece dynamic analysis and prediction during chatter of turning process. Mech Syst Signal Pr. 22, 1481–1494 (2008)
22. Qiang, L.Z.: Finite difference calculations of the deformations of multi-diameter workpieces during turning. J Mat Process Technol. 98, 310–316 (2000)
23. Jianliang, G, Rongdi, H.: A united model of diametral error in slender bar turning with a follower rest. Int J Mach Tools Manufac. 46, 1002–1012 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Świć, A., Gola, A. (2018). Control of Accuracy of Forming Elastic-Deformable Shafts with Low Rigidity. In: Omatu, S., Rodríguez, S., Villarrubia, G., Faria, P., Sitek, P., Prieto, J. (eds) Distributed Computing and Artificial Intelligence, 14th International Conference. DCAI 2017. Advances in Intelligent Systems and Computing, vol 620. Springer, Cham. https://doi.org/10.1007/978-3-319-62410-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-62410-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62409-9
Online ISBN: 978-3-319-62410-5
eBook Packages: EngineeringEngineering (R0)