Abstract
This study proposes a method for the calibration of the semi-empirical CLAIR model, a simplified reflectance model used to estimate Leaf Area Index (LAI) from optical data. The procedure can be applied in case of lacking of both LAI field measurements and surface reflectance data by exploiting free of charge data as the novel high level Landsat 8 Operational Land Imager Surface Reflectance (OLISR) product and the MODIS LAI (MCD15A3H level 4 product). This last dataset was used as LAI reference within an iterative procedure based on the resampling, at the MODIS pixel size, of LAI estimated from OLISR data. The procedure generated LAI information consistent with the MCD15A3H LAI estimation. Lastly, the method was tested and statistically assessed in a territory characterized by an extremely heterogeneous and fragmented landscape (irrigation district “Sinistra Ofanto”) located in the Apulia Region (Italy).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, J.M., Black, T.: Defining leaf area index for non-flat leaves. Plant, Cell Environ. 15(4), 421–429 (1992)
Gao, F., Anderson, M.C., Kustas, W.P., Wang, Y.: Simple method for retrieving leaf area index from landsat using modis leaf area index products as reference. J. Appl. Remote Sens. 6(1), 063554–1 (2012)
Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A., Escadafal, R., Ezzahar, J., Hoedjes, J., Kharrou, M., et al.: Monitoring wheat phenology and irrigation in central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manag. 79(1), 1–27 (2006)
Anderson, M.C., Kustas, W.P., Norman, J.M., Hain, C.R., Mecikalski, J.R., Schultz, L., González-Dugo, M.P., Cammalleri, C., d’Urso, G., Pimstein, A., Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 15(1), 223–239 (2011)
Jégo, G., Pattey, E., Liu, J.: Using leaf area index, retrieved from optical imagery, in the stics crop model for predicting yield and biomass of field crops. Field Crops Res. 131, 63–74 (2012)
Bréda, N.J.: Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot. 54(392), 2403–2417 (2003)
Martinez, B., Cassiraga, E., Camacho, F., Garcia-Haro, J.: Geostatistics for mapping leaf area index over a cropland landscape: efficiency sampling assessment. Remote Sens. 2(11), 2584–2606 (2010)
Tarantino, E., Figorito, B.: Extracting buildings from true color stereo aerial images using a decision making strategy. Remote Sens. 3(8), 1553–1567 (2011)
Richter, K., Vuolob, F., D’Ursoa, G., Dini, L.: Evaluation of different methods for the retrieval of LAI using high resolution airborne data. In: Proceedings of SPIE, the International Society for Optical Engineering, Society of Photo-Optical Instrumentation Engineers, p. 67420E–1 (2007)
Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G., Camps-Valls, G., Moreno, J.: Experimental sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-a comparison. ISPRS J. Photogramm. Remote Sens. 108, 260–272 (2015)
Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space-time lai variability in Northern Puglia (Italy) from spot vgt data. Environ. Monit. Assess. 187(7), 434 (2015)
Clevers, J.: Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ. 29(1), 25–37 (1989)
Clevers, J.: The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sens. Environ. 25(1), 53–69 (1988)
Baret, F., Jacquemoud, S., Hanocq, J.: The soil line concept in remote sensing. Remote Sens. Rev. 7(1), 65–82 (1993)
Vanino, S., Nino, P., De Michele, C., Bolognesi, S.F., Pulighe, G.: Earth observation for improving irrigation water management: a case-study from Apulia region in Italy. Agric. Agric. Sci. Proc. 4, 99–107 (2015)
Vuolo, F., Neugebauer, N., Bolognesi, S.F., Atzberger, C., D’Urso, G.: Estimation of leaf area index using Deimos-1 data: application and transferability of a semi-empirical relationship between two agricultural areas. Remote Sens. 5(3), 1274–1291 (2013)
Clevers, J.: Application of the WDVI in estimating LAI at the generative stage of barley. ISPRS J. Photogramm. Remote Sens. 46(1), 37–47 (1991)
Novelli, A., Tarantino, E., Fratino, U., Iacobellis, V., Romano, G., Gentile, F.: A data fusion algorithm based on the Kalman filter to estimate leaf area index evolution in durum wheat by using field measurements and modis surface reflectance data. Remote Sens. Lett. 7(5), 476–484 (2016)
Novelli, A.: A data fusion kalman filter algorithm to estimate leaf area index evolution by using Modis LAI and PROBA-V top of canopy synthesis data. In: Fourth International Conference on Remote Sensing and Geoinformation of the Environment. International Society for Optics and Photonics (2016). 968813
Clevers, J., Vonder, O., Jongschaap, R., Desprats, J.F., King, C., Prévot, L., Bruguier, N.: Using spot data for calibrating a wheat growth model under mediterranean conditions. Agronomie 22(6), 687–694 (2002)
Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., Piccinni, A.F.: Land use change impact on flooding areas: the case study of Cervaro Basin (Italy). Sustainability 8(10), 996 (2016)
Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, Gabriella, Piccinni, Ferruccio: Improving the ANN classification accuracy of landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 420–432. Springer, Cham (2016). doi:10.1007/978-3-319-42108-7_32
Clevers, J., Vonder, O., Jongschaap, R., Desprats, J., King, C., Prévot, L., Bruguier, N.: A semi-empirical approach for estimating plant parameters within the reseda-project. Int. Archives Photogramm. Remote Sens. 33, 272–279 (2000). B7/1; Part 7
Vuolo, F., Dini, L., D’Urso, G.: Assessment of LAI retrieval accuracy by inverting a RT model and a simple empirical model with multiangular and hyperspectral CHRIS/PROBA data from SPARC. In: Proceedings of the 3rd CHRIS/Proba Workshop (2005)
Minacapilli, M., Iovino, M., D’Urso, G., Osann Jochum, M., Moreno, J.: Crop and irrigation water management using high resolution remote sensing and agrohydrological models. In: AIP Conference Proceedings, vol. 852, pp. 99–106. AIP (2006)
Neugebauer, N., Vuolo, F.: Crop water requirements on regional level using remote sensing data-a case study in the marchfeld region berechnung des pflanzenwasserbedarfs für sommerfeldfrüchte mittels fernerkundungsdaten. eine fallstudie in der marchfeld-region. Photogramm. Fernerkund. Geoinf. 2014(5), 369–381 (2014)
Yoshioka, H., Miura, T., Demattê, J.A., Batchily, K., Huete, A.R.: Soil line influences on two-band vegetation indices and vegetation isolines: a numerical study. Remote Sens. 2(2), 545–561 (2010)
Balenzano, A., Satalino, G., Lovergine, F., Rinaldi, M., Iacobellis, V., Mastronardi, N., Mattia, F.: On the use of temporal series of L-and X-band SAR data for soil moisture retrieval. capitanata plain case study. Eur. J. Remote Sens. 46(1), 721–737 (2013)
Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., Gentile, F.: Evaluating the potential of geoeye data in retrieving LAI at watershed scale. In: SPIE Remote Sensing. International Society for Optics and Photonics (2014). 92392B–92392B
Tarantino, E., Novelli, A., Laterza, M., Gioia, A.: Testing high spatial resolution worldview-2 imagery for retrieving the leaf area index. In: Third International Conference on Remote Sensing and Geoinformation of the Environment. International Society for Optics and Photonics (2015). 95351N
Akdim, N., Alfieri, S.M., Habib, A., Choukri, A., Cheruiyot, E., Labbassi, K., Menenti, M.: Monitoring of irrigation schemes by remote sensing: phenology versus retrieval of biophysical variables. Remote Sens. 6(6), 5815–5851 (2014)
Vanino, S., Pulighe, G., Nino, P., De Michele, C., Bolognesi, S.F., D’Urso, G.: Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment. Remote Sens. 7(11), 14708–14730 (2015)
Giordano, R., Milella, P., Portoghese, I., Vurro, M., Apollonio, C., D’Agostino, D., Lamaddalena, N., Scardigno, A., Piccinni, A.: An innovative monitoring system for sustainable management of groundwater resources: objectives, stakeholder acceptability and implementation strategy. In: 2010 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), pp. 32–37. IEEE (2010)
Giordano, R., DAgostino, D., Apollonio, C., Scardigno, A., Pagano, A., Portoghese, I., Lamaddalena, N., Piccinni, A.F., Vurro, M.: Evaluating acceptability of groundwater protection measures under different agricultural policies. Agric. Water Manag. 147, 54–66 (2015)
Vermote, E., Justice, C., Claverie, M., Franch, B.: Preliminary analysis of the performance of the landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016)
Roy, D.P., Wulder, M., Loveland, T., Woodcock, C., Allen, R., Anderson, M., Helder, D., Irons, J., Johnson, D., Kennedy, R., et al.: Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)
Knyazikhin, Y., Glassy, J., Privette, J., Tian, Y., Lotsch, A., Zhang, Y., Wang, Y., Morisette, J., Votava, P., Myneni, R., et al.: Modis leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document. Theoretical Basis Document. NASA Goddard Space Flight Center, Greenbelt, MD 20771 (1999)
Yang, W., Shabanov, N., Huang, D., Wang, W., Dickinson, R., Nemani, R., Knyazikhin, Y., Myneni, R.: Analysis of leaf area index products from combination of modis terra and aqua data. Remote Sens. Environ. 104(3), 297–312 (2006)
Weier, J., Herring, D.: Measuring Vegetation (NDVI & EVI) (2011)
D’Urso, G.: Simulation and Management of On-Demand Irrigation Systems: A Combined Agrological and Remote Sensing Approach [sn] (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Peschechera, G., Novelli, A., Caradonna, G., Fratino, U. (2017). Calibration of the CLAIR Model by Using Landsat 8 Surface Reflectance Higher-Level Data and MODIS Leaf Area Index Products. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10407. Springer, Cham. https://doi.org/10.1007/978-3-319-62401-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-62401-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62400-6
Online ISBN: 978-3-319-62401-3
eBook Packages: Computer ScienceComputer Science (R0)