[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Calibration of the CLAIR Model by Using Landsat 8 Surface Reflectance Higher-Level Data and MODIS Leaf Area Index Products

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

This study proposes a method for the calibration of the semi-empirical CLAIR model, a simplified reflectance model used to estimate Leaf Area Index (LAI) from optical data. The procedure can be applied in case of lacking of both LAI field measurements and surface reflectance data by exploiting free of charge data as the novel high level Landsat 8 Operational Land Imager Surface Reflectance (OLISR) product and the MODIS LAI (MCD15A3H level 4 product). This last dataset was used as LAI reference within an iterative procedure based on the resampling, at the MODIS pixel size, of LAI estimated from OLISR data. The procedure generated LAI information consistent with the MCD15A3H LAI estimation. Lastly, the method was tested and statistically assessed in a territory characterized by an extremely heterogeneous and fragmented landscape (irrigation district “Sinistra Ofanto”) located in the Apulia Region (Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J.M., Black, T.: Defining leaf area index for non-flat leaves. Plant, Cell Environ. 15(4), 421–429 (1992)

    Article  Google Scholar 

  2. Gao, F., Anderson, M.C., Kustas, W.P., Wang, Y.: Simple method for retrieving leaf area index from landsat using modis leaf area index products as reference. J. Appl. Remote Sens. 6(1), 063554–1 (2012)

    Article  Google Scholar 

  3. Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A., Escadafal, R., Ezzahar, J., Hoedjes, J., Kharrou, M., et al.: Monitoring wheat phenology and irrigation in central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manag. 79(1), 1–27 (2006)

    Article  Google Scholar 

  4. Anderson, M.C., Kustas, W.P., Norman, J.M., Hain, C.R., Mecikalski, J.R., Schultz, L., González-Dugo, M.P., Cammalleri, C., d’Urso, G., Pimstein, A., Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 15(1), 223–239 (2011)

    Article  Google Scholar 

  5. Jégo, G., Pattey, E., Liu, J.: Using leaf area index, retrieved from optical imagery, in the stics crop model for predicting yield and biomass of field crops. Field Crops Res. 131, 63–74 (2012)

    Article  Google Scholar 

  6. Bréda, N.J.: Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot. 54(392), 2403–2417 (2003)

    Article  Google Scholar 

  7. Martinez, B., Cassiraga, E., Camacho, F., Garcia-Haro, J.: Geostatistics for mapping leaf area index over a cropland landscape: efficiency sampling assessment. Remote Sens. 2(11), 2584–2606 (2010)

    Article  Google Scholar 

  8. Tarantino, E., Figorito, B.: Extracting buildings from true color stereo aerial images using a decision making strategy. Remote Sens. 3(8), 1553–1567 (2011)

    Article  Google Scholar 

  9. Richter, K., Vuolob, F., D’Ursoa, G., Dini, L.: Evaluation of different methods for the retrieval of LAI using high resolution airborne data. In: Proceedings of SPIE, the International Society for Optical Engineering, Society of Photo-Optical Instrumentation Engineers, p. 67420E–1 (2007)

    Google Scholar 

  10. Verrelst, J., Rivera, J.P., Veroustraete, F., Muñoz-Marí, J., Clevers, J.G., Camps-Valls, G., Moreno, J.: Experimental sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-a comparison. ISPRS J. Photogramm. Remote Sens. 108, 260–272 (2015)

    Article  Google Scholar 

  11. Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space-time lai variability in Northern Puglia (Italy) from spot vgt data. Environ. Monit. Assess. 187(7), 434 (2015)

    Article  Google Scholar 

  12. Clevers, J.: Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ. 29(1), 25–37 (1989)

    Article  Google Scholar 

  13. Clevers, J.: The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sens. Environ. 25(1), 53–69 (1988)

    Article  Google Scholar 

  14. Baret, F., Jacquemoud, S., Hanocq, J.: The soil line concept in remote sensing. Remote Sens. Rev. 7(1), 65–82 (1993)

    Article  Google Scholar 

  15. Vanino, S., Nino, P., De Michele, C., Bolognesi, S.F., Pulighe, G.: Earth observation for improving irrigation water management: a case-study from Apulia region in Italy. Agric. Agric. Sci. Proc. 4, 99–107 (2015)

    Google Scholar 

  16. Vuolo, F., Neugebauer, N., Bolognesi, S.F., Atzberger, C., D’Urso, G.: Estimation of leaf area index using Deimos-1 data: application and transferability of a semi-empirical relationship between two agricultural areas. Remote Sens. 5(3), 1274–1291 (2013)

    Article  Google Scholar 

  17. Clevers, J.: Application of the WDVI in estimating LAI at the generative stage of barley. ISPRS J. Photogramm. Remote Sens. 46(1), 37–47 (1991)

    Article  Google Scholar 

  18. Novelli, A., Tarantino, E., Fratino, U., Iacobellis, V., Romano, G., Gentile, F.: A data fusion algorithm based on the Kalman filter to estimate leaf area index evolution in durum wheat by using field measurements and modis surface reflectance data. Remote Sens. Lett. 7(5), 476–484 (2016)

    Article  Google Scholar 

  19. Novelli, A.: A data fusion kalman filter algorithm to estimate leaf area index evolution by using Modis LAI and PROBA-V top of canopy synthesis data. In: Fourth International Conference on Remote Sensing and Geoinformation of the Environment. International Society for Optics and Photonics (2016). 968813

    Google Scholar 

  20. Clevers, J., Vonder, O., Jongschaap, R., Desprats, J.F., King, C., Prévot, L., Bruguier, N.: Using spot data for calibrating a wheat growth model under mediterranean conditions. Agronomie 22(6), 687–694 (2002)

    Article  Google Scholar 

  21. Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., Piccinni, A.F.: Land use change impact on flooding areas: the case study of Cervaro Basin (Italy). Sustainability 8(10), 996 (2016)

    Article  Google Scholar 

  22. Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, Gabriella, Piccinni, Ferruccio: Improving the ANN classification accuracy of landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 420–432. Springer, Cham (2016). doi:10.1007/978-3-319-42108-7_32

    Chapter  Google Scholar 

  23. Clevers, J., Vonder, O., Jongschaap, R., Desprats, J., King, C., Prévot, L., Bruguier, N.: A semi-empirical approach for estimating plant parameters within the reseda-project. Int. Archives Photogramm. Remote Sens. 33, 272–279 (2000). B7/1; Part 7

    Google Scholar 

  24. Vuolo, F., Dini, L., D’Urso, G.: Assessment of LAI retrieval accuracy by inverting a RT model and a simple empirical model with multiangular and hyperspectral CHRIS/PROBA data from SPARC. In: Proceedings of the 3rd CHRIS/Proba Workshop (2005)

    Google Scholar 

  25. Minacapilli, M., Iovino, M., D’Urso, G., Osann Jochum, M., Moreno, J.: Crop and irrigation water management using high resolution remote sensing and agrohydrological models. In: AIP Conference Proceedings, vol. 852, pp. 99–106. AIP (2006)

    Google Scholar 

  26. Neugebauer, N., Vuolo, F.: Crop water requirements on regional level using remote sensing data-a case study in the marchfeld region berechnung des pflanzenwasserbedarfs für sommerfeldfrüchte mittels fernerkundungsdaten. eine fallstudie in der marchfeld-region. Photogramm. Fernerkund. Geoinf. 2014(5), 369–381 (2014)

    Article  Google Scholar 

  27. Yoshioka, H., Miura, T., Demattê, J.A., Batchily, K., Huete, A.R.: Soil line influences on two-band vegetation indices and vegetation isolines: a numerical study. Remote Sens. 2(2), 545–561 (2010)

    Article  Google Scholar 

  28. Balenzano, A., Satalino, G., Lovergine, F., Rinaldi, M., Iacobellis, V., Mastronardi, N., Mattia, F.: On the use of temporal series of L-and X-band SAR data for soil moisture retrieval. capitanata plain case study. Eur. J. Remote Sens. 46(1), 721–737 (2013)

    Article  Google Scholar 

  29. Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., Gentile, F.: Evaluating the potential of geoeye data in retrieving LAI at watershed scale. In: SPIE Remote Sensing. International Society for Optics and Photonics (2014). 92392B–92392B

    Google Scholar 

  30. Tarantino, E., Novelli, A., Laterza, M., Gioia, A.: Testing high spatial resolution worldview-2 imagery for retrieving the leaf area index. In: Third International Conference on Remote Sensing and Geoinformation of the Environment. International Society for Optics and Photonics (2015). 95351N

    Google Scholar 

  31. Akdim, N., Alfieri, S.M., Habib, A., Choukri, A., Cheruiyot, E., Labbassi, K., Menenti, M.: Monitoring of irrigation schemes by remote sensing: phenology versus retrieval of biophysical variables. Remote Sens. 6(6), 5815–5851 (2014)

    Article  Google Scholar 

  32. Vanino, S., Pulighe, G., Nino, P., De Michele, C., Bolognesi, S.F., D’Urso, G.: Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment. Remote Sens. 7(11), 14708–14730 (2015)

    Article  Google Scholar 

  33. Giordano, R., Milella, P., Portoghese, I., Vurro, M., Apollonio, C., D’Agostino, D., Lamaddalena, N., Scardigno, A., Piccinni, A.: An innovative monitoring system for sustainable management of groundwater resources: objectives, stakeholder acceptability and implementation strategy. In: 2010 IEEE Workshop on Environmental Energy and Structural Monitoring Systems (EESMS), pp. 32–37. IEEE (2010)

    Google Scholar 

  34. Giordano, R., DAgostino, D., Apollonio, C., Scardigno, A., Pagano, A., Portoghese, I., Lamaddalena, N., Piccinni, A.F., Vurro, M.: Evaluating acceptability of groundwater protection measures under different agricultural policies. Agric. Water Manag. 147, 54–66 (2015)

    Article  Google Scholar 

  35. Vermote, E., Justice, C., Claverie, M., Franch, B.: Preliminary analysis of the performance of the landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016)

    Article  Google Scholar 

  36. Roy, D.P., Wulder, M., Loveland, T., Woodcock, C., Allen, R., Anderson, M., Helder, D., Irons, J., Johnson, D., Kennedy, R., et al.: Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)

    Article  Google Scholar 

  37. Knyazikhin, Y., Glassy, J., Privette, J., Tian, Y., Lotsch, A., Zhang, Y., Wang, Y., Morisette, J., Votava, P., Myneni, R., et al.: Modis leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document. Theoretical Basis Document. NASA Goddard Space Flight Center, Greenbelt, MD 20771 (1999)

    Google Scholar 

  38. Yang, W., Shabanov, N., Huang, D., Wang, W., Dickinson, R., Nemani, R., Knyazikhin, Y., Myneni, R.: Analysis of leaf area index products from combination of modis terra and aqua data. Remote Sens. Environ. 104(3), 297–312 (2006)

    Article  Google Scholar 

  39. Weier, J., Herring, D.: Measuring Vegetation (NDVI & EVI) (2011)

    Google Scholar 

  40. D’Urso, G.: Simulation and Management of On-Demand Irrigation Systems: A Combined Agrological and Remote Sensing Approach [sn] (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Novelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Peschechera, G., Novelli, A., Caradonna, G., Fratino, U. (2017). Calibration of the CLAIR Model by Using Landsat 8 Surface Reflectance Higher-Level Data and MODIS Leaf Area Index Products. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10407. Springer, Cham. https://doi.org/10.1007/978-3-319-62401-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62401-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62400-6

  • Online ISBN: 978-3-319-62401-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics