[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Ontology for Personalised Course Recommendation Applications

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10404))

Included in the following conference series:

Abstract

The primary data source for universities and courses for students is increasingly becoming the web, and with a vast amount of information about thousands of courses on different websites, it is quite a task to find one that matches a student’s needs. That is why we are proposing the “Course Recommendation System”, a system that suggests the course best suited for prospective students. As there has been a huge increase in course content on the Internet, finding the course you really need has become time-consuming, so we are proposing to use an ontology-based approach to semantic content recommendation. The aim is to enhance the efficiency and effectiveness of providing students with suitable recommendations. The recommender takes into consideration knowledge about the user (the student’s profile) and course content, as well as knowledge about the domain that is being learned. Ontology is used to both models and represent such forms of knowledge. There are four steps to this: extracting information from multiple sources, applying ontologies by using Protégé tools, semantic relevance calculation and refining the recommendation. A personalised, complete and augmented course is then suggested for the student, based on these steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le Roux, F., Ranjeet, E., Ghai, V., Gao, Y., Lu, J.: A course recommender system using multiple criteria decision making method. In: International Conference on Intelligent Systems and Knowledge Engineering. Atlantis Press, Chengdu (2007). doi:10.2991/iske.2007.238

  2. Apaza, R.G., Cervantes, E.V., Quispe, L.C., Luna, J.O.: Online courses recommendation based on LDA. In: SIMBig, pp 42–48. Peru (2014)

    Google Scholar 

  3. Wang, S.C., Tanaka, Y.: Topic-oriented query expansion for web search. In: Proceedings of the 15th International Conference on World Wide Web, pp. 1029–1030. ACM, New York (2006). doi:10.1145/1135777.1135999

  4. Zhang, Z.K., Zhou, T., Zhang, Y.C.: Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs. J. Phys. A: Stat. Mech. Appl. 389(1), 179–186 (2010)

    MathSciNet  Google Scholar 

  5. Huang, C.Y., Chen, R.C., Chen, L.S.: Course-recommendation system based on ontology. In: International Conference Machine Learning and Cybernetics (ICMLC), pp. 1168–1173. IEEE, Tianjin (2013). doi:10.1109/ICMLC.2013.6890767

  6. Yang, H., Cui, Z., O’Brien, P.: Extracting ontologies from legacy systems for understanding and re-engineering. In: Computer Software and Applications Conference, pp. 21–26. IEEE, Phoenix (1999). doi:10.1109/CMPSAC.1999.812512

  7. Gruber, T.R.: A translation approach to portable ontology specifications. Technical report, Knowledge acquisition (1993)

    Google Scholar 

  8. Meehan, K., Lunney, T., Curran, K., McCaughey, A.: Context-aware intelligent recommendation system for tourism. In: Pervasive Computing and Communications IEEE International Conference, pp. 328–331. IEEE, San Diego (2013). doi:10.1109/PerComW.2013.6529508

  9. Asabere, N.Y.: Towards a viewpoint of Context-Aware Recommender Systems (CARS) and services. Int. J. Comput. Sci. Telecommun. 4, 10–29 (2013)

    Google Scholar 

  10. Burke, R.: Hybrid recommender systems: survey and experiments. J. User Model. User-Adap. Inter. 12, 331–370 (2002). doi:10.1023/A:1021240730564. Springer

    Article  MATH  Google Scholar 

  11. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, New York (2011)

    Book  MATH  Google Scholar 

  12. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. J Commun. ACM. 40, 66–72 (1997). doi:10.1145/245108.245124. New York

    Article  Google Scholar 

  13. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. J. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005). doi:10.1109/TKDE.2005.99. IEEE

    Article  Google Scholar 

  14. Yu, Z., Nakamura, Y., Jang, S., Kajita, S., Mase, K.: Ontology-based semantic recommendation for context-aware e-learning. In: Indulska, J., Ma, J., Yang, Laurence T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 898–907. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73549-6_88

    Chapter  Google Scholar 

  15. Tsai, K.H., Chiu, T.K., Lee, M.C., Wang, T.I.: A learning objects recommendation model based on the preference and ontological approaches. In: Advanced Learning Technologies Sixth International Conference, pp. 36–40. IEEE, Kerkrade (2006). doi:10.1109/ICALT.2006.1652359

  16. Farzan, R., Brusilovsky, P.: Social navigation support in a course recommendation system. In: Wade, Vincent P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 91–100. Springer, Heidelberg (2006). doi:10.1007/11768012_11

    Chapter  Google Scholar 

  17. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. J. Inf. Process. Manag. 24, 513–523 (1988). doi:10.1016/0306-4573(88)90021-0. Elsevier

    Article  Google Scholar 

  18. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  19. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). doi:10.1007/BFb0026683

    Chapter  Google Scholar 

  20. Cardoso, J.: The semantic web vision: where are we? J. IEEE Intell. Syst. (2007). doi:10.1109/MIS.2007.4338499

  21. The Universities and Colleges Admissions Service in United Kingdom. https://www.ucas.com/

  22. Ameen, A., Khan, K.U.R., Rani, B.P.: Ontological student profile. In: Proceedings of the Second International Conference on Computational Science, Engineering and Information Technology, pp. 466–471. ACM (2012). doi:10.1145/2393216.2393294

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Essmat Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ibrahim, M.E., Yang, Y., Ndzi, D. (2017). Using Ontology for Personalised Course Recommendation Applications. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics