Abstract
The primary data source for universities and courses for students is increasingly becoming the web, and with a vast amount of information about thousands of courses on different websites, it is quite a task to find one that matches a student’s needs. That is why we are proposing the “Course Recommendation System”, a system that suggests the course best suited for prospective students. As there has been a huge increase in course content on the Internet, finding the course you really need has become time-consuming, so we are proposing to use an ontology-based approach to semantic content recommendation. The aim is to enhance the efficiency and effectiveness of providing students with suitable recommendations. The recommender takes into consideration knowledge about the user (the student’s profile) and course content, as well as knowledge about the domain that is being learned. Ontology is used to both models and represent such forms of knowledge. There are four steps to this: extracting information from multiple sources, applying ontologies by using Protégé tools, semantic relevance calculation and refining the recommendation. A personalised, complete and augmented course is then suggested for the student, based on these steps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Le Roux, F., Ranjeet, E., Ghai, V., Gao, Y., Lu, J.: A course recommender system using multiple criteria decision making method. In: International Conference on Intelligent Systems and Knowledge Engineering. Atlantis Press, Chengdu (2007). doi:10.2991/iske.2007.238
Apaza, R.G., Cervantes, E.V., Quispe, L.C., Luna, J.O.: Online courses recommendation based on LDA. In: SIMBig, pp 42–48. Peru (2014)
Wang, S.C., Tanaka, Y.: Topic-oriented query expansion for web search. In: Proceedings of the 15th International Conference on World Wide Web, pp. 1029–1030. ACM, New York (2006). doi:10.1145/1135777.1135999
Zhang, Z.K., Zhou, T., Zhang, Y.C.: Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs. J. Phys. A: Stat. Mech. Appl. 389(1), 179–186 (2010)
Huang, C.Y., Chen, R.C., Chen, L.S.: Course-recommendation system based on ontology. In: International Conference Machine Learning and Cybernetics (ICMLC), pp. 1168–1173. IEEE, Tianjin (2013). doi:10.1109/ICMLC.2013.6890767
Yang, H., Cui, Z., O’Brien, P.: Extracting ontologies from legacy systems for understanding and re-engineering. In: Computer Software and Applications Conference, pp. 21–26. IEEE, Phoenix (1999). doi:10.1109/CMPSAC.1999.812512
Gruber, T.R.: A translation approach to portable ontology specifications. Technical report, Knowledge acquisition (1993)
Meehan, K., Lunney, T., Curran, K., McCaughey, A.: Context-aware intelligent recommendation system for tourism. In: Pervasive Computing and Communications IEEE International Conference, pp. 328–331. IEEE, San Diego (2013). doi:10.1109/PerComW.2013.6529508
Asabere, N.Y.: Towards a viewpoint of Context-Aware Recommender Systems (CARS) and services. Int. J. Comput. Sci. Telecommun. 4, 10–29 (2013)
Burke, R.: Hybrid recommender systems: survey and experiments. J. User Model. User-Adap. Inter. 12, 331–370 (2002). doi:10.1023/A:1021240730564. Springer
Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, New York (2011)
Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. J Commun. ACM. 40, 66–72 (1997). doi:10.1145/245108.245124. New York
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. J. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005). doi:10.1109/TKDE.2005.99. IEEE
Yu, Z., Nakamura, Y., Jang, S., Kajita, S., Mase, K.: Ontology-based semantic recommendation for context-aware e-learning. In: Indulska, J., Ma, J., Yang, Laurence T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 898–907. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73549-6_88
Tsai, K.H., Chiu, T.K., Lee, M.C., Wang, T.I.: A learning objects recommendation model based on the preference and ontological approaches. In: Advanced Learning Technologies Sixth International Conference, pp. 36–40. IEEE, Kerkrade (2006). doi:10.1109/ICALT.2006.1652359
Farzan, R., Brusilovsky, P.: Social navigation support in a course recommendation system. In: Wade, Vincent P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 91–100. Springer, Heidelberg (2006). doi:10.1007/11768012_11
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. J. Inf. Process. Manag. 24, 513–523 (1988). doi:10.1016/0306-4573(88)90021-0. Elsevier
Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)
Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). doi:10.1007/BFb0026683
Cardoso, J.: The semantic web vision: where are we? J. IEEE Intell. Syst. (2007). doi:10.1109/MIS.2007.4338499
The Universities and Colleges Admissions Service in United Kingdom. https://www.ucas.com/
Ameen, A., Khan, K.U.R., Rani, B.P.: Ontological student profile. In: Proceedings of the Second International Conference on Computational Science, Engineering and Information Technology, pp. 466–471. ACM (2012). doi:10.1145/2393216.2393294
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ibrahim, M.E., Yang, Y., Ndzi, D. (2017). Using Ontology for Personalised Course Recommendation Applications. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-62392-4_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62391-7
Online ISBN: 978-3-319-62392-4
eBook Packages: Computer ScienceComputer Science (R0)