[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Vector Field Second Order Derivative Approximation and Geometrical Characteristics

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10404))

Included in the following conference series:

Abstract

Vector field is mostly linearly approximated for the purpose of classification and description. This approximation gives us only basic information of the vector field. We will show how to approximate the vector field with second order derivatives, i.e. Hessian and Jacobian matrices. This approximation gives us much more detailed description of the vector field. Moreover, we will show the similarity of this approximation with conic section formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agranovsky, A., Camp, D., Joy, K.I., Childs, H.: Subsampling-based compression and flow visualization. In: IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics (2015)

    Google Scholar 

  2. Balduzzi, F., Bianchini, A., Maleci, R., Ferrara, G., Ferrari, L.: Critical issues in the CFD simulation of Darrieus wind turbines. Renew. Energy 85, 419–435 (2016)

    Article  Google Scholar 

  3. Benbourhim, M.N., Bouhamidi, A.: Approximation of vectors fields by thin plate splines with tension. J. Approx. Theory 136(2), 198–229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabrera, D.A.C., González-Casanova, P., Gout, C., Juárez, L.H., Reséndizd, L.R.: Vector field approximation using radial basis functions. J. Comput. Appl. Math. 240, 163–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Forsberg, A., Chen, J., Laidlaw, D.: Comparing 3D vector field visualization methods: a user study. IEEE Trans. Vis. Comput. Graph. 15(6), 1219–1226 (2009)

    Article  Google Scholar 

  6. Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Comput. 22(8), 27–36 (1989)

    Article  Google Scholar 

  7. Koch, S., Kasten, J., Wiebel, A., Scheuermann, G., Hlawitschka, M.: 2D Vector field approximation using linear neighborhoods. Vis. Comput. 32, 1563–1578 (2015)

    Article  Google Scholar 

  8. Laidlaw, D.H., Kirby, R.M., Jackson, C.D., Davidson, J.S., Miller, T.S., Da Silva, M., Warrenand, W.H., Tarr, M.J.: Comparing 2D vector field visualization methods: a user study. IEEE Trans. Vis. Comput. Graph. 11(1), 59–70 (2005)

    Article  Google Scholar 

  9. Lage, M., Petronetto, F., Paiva, A., Lopes, H., Lewiner, T., Tavares, G.: Vector field reconstruction from sparse samples with applications. In: 19th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI (2006)

    Google Scholar 

  10. de Leeuw, W., van Liere, R.: Collapsing flow topology using area metrics. In: Proceedings of IEEE Visualization 1999, pp. 349–354 (1999)

    Google Scholar 

  11. Lu, K., Chaudhuri, A., Lee, T.Y., Shen, H.W., Wong, P.C.: Exploring vector fields with distribution-based streamline analysis. PacificVis, pp. 257–264 (2013)

    Google Scholar 

  12. Peng, C., Teng, Y., Hwang, B., Guo, Z., Wang, L.P.: Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Comput. Math. Appl. 72(2), 349–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Philippou, P.A., Strickland, R.N.: Vector field analysis and synthesis using threedimensional phase portraits. Graph. Models Image Process. 59(6), 446–462 (1997)

    Article  Google Scholar 

  14. Scheuermann, G., Krüger, H., Menzel, M., Rockwood, A.: Visualizing non-linear vector field topology. IEEE Trans. Vis. Comput. Graph. 4(2), 109–116 (1998)

    Article  Google Scholar 

  15. Skraba, P., Rosen, P., Wang, B., Chen, G., Bhatia, H., Pascucci, V.: Critical point cancellation in 3D vector fields: robustness and discussion. IEEE Trans. Vis. Comput. Graph. (2016)

    Google Scholar 

  16. Skraba, P., Wang, B., Chen, G., Rosen, P.: 2D vector field simplification based on robustness. In: Pacific Visualization Symposium (PacificVis), IEEE, pp. 49–56 (2014)

    Google Scholar 

  17. Smolik, M., Skala, V.: Spherical RBF vector field interpolation: experimental study. SAMI 2017, pp. 431–434, Slovakia (2017)

    Google Scholar 

  18. Smolik, M., Skala, V.: Vector field interpolation with radial basis functions. SIGRAD 2016, pp. 15–21, Sweden (2016)

    Google Scholar 

  19. Weinkauf, T., Theisel, H., Shi, K., Hege, H.-C., Seidel, H.-P.: Extracting higher order critical points and topological simplification of 3D vector fields. In: Proceedings of IEEE Visualization 2005, pp. 559–566, Minneapolis, U.S.A. (2005)

    Google Scholar 

  20. Westermann, R., Johnson, C., Ertl, T.: Topology-preserving smoothing of vector fields. IEEE Trans.Vis. Comput. Graph 7(3), 222–229 (2001)

    Article  Google Scholar 

  21. Wischgoll, T., Scheuermann, G.: Detection and visualization of closed streamlines in planar flows. IEEE Trans. Vis. Comput. Graph. 7(2), 165–172 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues at the University of West Bohemia, Plzen, for their comments and suggestions, their valuable comments and hints provided. The research was supported by projects Czech Science Foundation (GACR) No. 17-05534S and partly by SGS 2016-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Smolik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Smolik, M., Skala, V. (2017). Vector Field Second Order Derivative Approximation and Geometrical Characteristics. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics