Abstract
Several approaches exist to data-mining big corpora of formal proofs. Some of these approaches are based on statistical machine learning, and some – on theory exploration. However, most are developed for either untyped or simply-typed theorem provers. In this paper, we present a method that combines statistical data mining and theory exploration in order to analyse and automate proofs in dependently typed language of Coq.
The work was supported by EPSRC grants EP/J014222/1 and EP/K031864/1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Basin, D., et al.: Rippling: Meta-Level Guidance for Mathematical Reasoning. Cambridge University Press, New York (2005)
Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
Blanchette, J., et al.: Hammering towards QED. J. Formalized Reasoning 9(1), 101–148 (2016)
Coq development team. The Coq Proof Assistant Reference Manual, version 8.4pl3. Technical report (2013)
Czajka, L., Kaliszyk, C.: Goal translation for a Hammer for Coq. In: Proceeding of Hammers for Type Theories, EPTCS. vol. 210 , pp. 13-20 (2016)
Duncan, H.: The use of Data-Mining for the Automatic Formation of Tactics. Ph.D. thesis, University of Edinburgh (2002)
Gonthier, G., Mahboubi, A.: An introduction to small scale reflection. J. Formalized Reasoning 3(2), 95–152 (2010)
Gransden, T., Walkinshaw, N., Raman, R.: Mining state-based models from proof corpora. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 282–297. Springer, Cham (2014). doi:10.1007/978-3-319-08434-3_21
Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: Search for proofs using inferred automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 246–255. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_16
Hall, M., et al.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
Heras, J., et al.: Computing persistent homology within Coq/SSReflect. ACM Trans. Comput. Logic 14(4), 26:1–26:16 (2013)
Heras, J., Komendantskaya, E.: Recycling proof patterns in Coq: case studies. J. Math. Comput. Sci. 8(1), 99–116 (2014)
Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 228–242. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6_19
Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recognition and lemma discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_27
Johansson, M., et al.: Conjecture synthesis for inductive theories. J. Autom. Reasoning 47(3), 251–289 (2011)
Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 108–122. Springer, Cham (2014). doi:10.1007/978-3-319-08434-3_9
Kaliszyk, C., Urban, J.: Lemma mining over HOL Light. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 503–517. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_34
Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput. 69, 109–128 (2015)
Kaufmann, M., Manolios, P., Moore, P. (eds.): Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Boston (2000)
Komendantskaya, E., et al.: Machine learning for proof general: interfacing interfaces. Electron. Proc. Theor. Comput. Sci. 118, 15–41 (2013)
Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2_6
The Univalent Foundations Program. Homotopy Type Theory. Institute for Advanced Study. https://github.com/HoTT/HoTT/wiki (2013)
Roux, S.: Acyclic preferences and existence of sequential nash equilibria: a formal and constructive equivalence. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 293–309. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9_21
Urban, J., et al.: ATP and presentation service for Mizar formalizations. J. Autom. Reasoning 50(2), 229–241 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Komendantskaya, E., Heras, J. (2017). Proof Mining with Dependent Types. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds) Intelligent Computer Mathematics. CICM 2017. Lecture Notes in Computer Science(), vol 10383. Springer, Cham. https://doi.org/10.1007/978-3-319-62075-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-62075-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62074-9
Online ISBN: 978-3-319-62075-6
eBook Packages: Computer ScienceComputer Science (R0)