[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Proof Mining with Dependent Types

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10383))

Included in the following conference series:

Abstract

Several approaches exist to data-mining big corpora of formal proofs. Some of these approaches are based on statistical machine learning, and some – on theory exploration. However, most are developed for either untyped or simply-typed theorem provers. In this paper, we present a method that combines statistical data mining and theory exploration in order to analyse and automate proofs in dependently typed language of Coq.

The work was supported by EPSRC grants EP/J014222/1 and EP/K031864/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basin, D., et al.: Rippling: Meta-Level Guidance for Mathematical Reasoning. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  2. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Blanchette, J., et al.: Hammering towards QED. J. Formalized Reasoning 9(1), 101–148 (2016)

    MathSciNet  Google Scholar 

  4. Coq development team. The Coq Proof Assistant Reference Manual, version 8.4pl3. Technical report (2013)

    Google Scholar 

  5. Czajka, L., Kaliszyk, C.: Goal translation for a Hammer for Coq. In: Proceeding of Hammers for Type Theories, EPTCS. vol. 210 , pp. 13-20 (2016)

    Google Scholar 

  6. Duncan, H.: The use of Data-Mining for the Automatic Formation of Tactics. Ph.D. thesis, University of Edinburgh (2002)

    Google Scholar 

  7. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection. J. Formalized Reasoning 3(2), 95–152 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Gransden, T., Walkinshaw, N., Raman, R.: Mining state-based models from proof corpora. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 282–297. Springer, Cham (2014). doi:10.1007/978-3-319-08434-3_21

    Chapter  Google Scholar 

  9. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: Search for proofs using inferred automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 246–255. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_16

    Chapter  Google Scholar 

  10. Hall, M., et al.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  11. Heras, J., et al.: Computing persistent homology within Coq/SSReflect. ACM Trans. Comput. Logic 14(4), 26:1–26:16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heras, J., Komendantskaya, E.: Recycling proof patterns in Coq: case studies. J. Math. Comput. Sci. 8(1), 99–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 228–242. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6_19

    Chapter  Google Scholar 

  14. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recognition and lemma discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_27

    Chapter  Google Scholar 

  15. Johansson, M., et al.: Conjecture synthesis for inductive theories. J. Autom. Reasoning 47(3), 251–289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 108–122. Springer, Cham (2014). doi:10.1007/978-3-319-08434-3_9

    Chapter  Google Scholar 

  17. Kaliszyk, C., Urban, J.: Lemma mining over HOL Light. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 503–517. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_34

    Chapter  Google Scholar 

  18. Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput. 69, 109–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaufmann, M., Manolios, P., Moore, P. (eds.): Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  20. Komendantskaya, E., et al.: Machine learning for proof general: interfacing interfaces. Electron. Proc. Theor. Comput. Sci. 118, 15–41 (2013)

    Article  Google Scholar 

  21. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2_6

    Chapter  Google Scholar 

  22. The Univalent Foundations Program. Homotopy Type Theory. Institute for Advanced Study. https://github.com/HoTT/HoTT/wiki (2013)

  23. Roux, S.: Acyclic preferences and existence of sequential nash equilibria: a formal and constructive equivalence. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 293–309. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9_21

    Chapter  Google Scholar 

  24. Urban, J., et al.: ATP and presentation service for Mizar formalizations. J. Autom. Reasoning 50(2), 229–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Komendantskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Komendantskaya, E., Heras, J. (2017). Proof Mining with Dependent Types. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds) Intelligent Computer Mathematics. CICM 2017. Lecture Notes in Computer Science(), vol 10383. Springer, Cham. https://doi.org/10.1007/978-3-319-62075-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62075-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62074-9

  • Online ISBN: 978-3-319-62075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics