Abstract
In recent years, the volume of generated RDF graphs streams from different fields of applications is very large and therefore difficult to process in an optimized manner. Indeed, processing such data in conventional triplestores can be costly in terms of execution time and memory consumption. Several works have examined data compression approach both on static and dynamic RDF data. In addition to those based on stored RDF data, two recent compression algorithms RDSZ and ERI were focused on RDF streams. Continuous compressed format requires less memory space but cannot be exploited through SPARQL queries. In this paper, we propose an approach for continuous querying RDSZ-based RDF streams without decompression phase. We add three algorithms from simple to aggregate query execution over RDSZ compressed items. Our experimentation use real datasets to demonstrate the effectiveness and efficiency of our proposition in term of query execution time and memory save.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data management using vertical partitioning. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 411–422. VLDB Endowment (2007)
Álvarez-García, S., Brisaboa, N.R., Fernández, J.D., Martínez-Prieto, M.A.: Compressed k2-triples for full-in-memory rdf engines. arXiv preprint arXiv:1105.4004 (2011)
Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event processing and stream reasoning. In: Proceedings of the 20th International Conference on World Wide Web, pp. 635–644. ACM (2011)
Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Stream reasoning: where we got so far. In: NeFoRS 2010: 4th International Workshop on New Forms of Reasoning for the Semantic Web: Scalable and Dynamic (2010)
Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-sparql: Sparql for continuous querying. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1061–1062. ACM (2009)
Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)
Calbimonte, J.P., Corcho, O., Gray, A.J.: Enabling ontology-based access to streaming data sources. In: International Semantic Web Conference, pp. 96–111. Springer (2010)
Chiky, R.: Résumé de flux de données ditribués. Ph.D. thesis, Télécom ParisTech (2009)
Csernel, B., Clérot, F., Hébrail, G.: Classification de Flux de Donnes par chantillonnages sur Fentres Inclines
Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards stream reasoning. In: Future Internet Symposium, pp. 72–81. Springer (2008)
Fernández, J.D., Gutierrez, C., Martínez-Prieto, M.A.: Rdf compression: basic approaches. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1091–1092. ACM (2010)
Fernández, J.D., Llaves, A., Corcho, O.: Efficient rdf interchange (eri) format for rdf data streams. In: International Semantic Web Conference, pp. 244–259. Springer (2014)
Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (hdt). Web Semant. Sci. Serv. Agents World Wide Web 19, 22–41 (2013)
Fernández, N., Arias, J., Sánchez, L., Fuentes-Lorenzo, D., Corcho, Ó.: RDSZ: an approach for lossless RDF stream compression. In: European Semantic Web Conference, pp. 52–67. Springer (2014)
Joshi, A.K., Hitzler, P., Dong, G.: Logical linked data compression. In: Extended Semantic Web Conference, pp. 170–184. Springer (2013)
Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pattern matching over RDF data streams. In: Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, pp. 58–68. ACM (2012)
Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: International Semantic Web Conference, pp. 370–388. Springer (2011)
Urbani, J., Maassen, J., Drost, N., Seinstra, F., Bal, H.: Scalable RDF data compression with mapreduce. Concurr. Comput. Pract. Exp. 25(1), 24–39 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Déme, N.B., Dia, A.F., Boly, A., Kazi-Aoul, Z., Chiky, R. (2018). An Efficient Approach for Real-Time Processing of RDSZ-Based Compressed RDF Streams. In: Lee, R. (eds) Software Engineering Research, Management and Applications. SERA 2017. Studies in Computational Intelligence, vol 722. Springer, Cham. https://doi.org/10.1007/978-3-319-61388-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-61388-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61387-1
Online ISBN: 978-3-319-61388-8
eBook Packages: EngineeringEngineering (R0)