Abstract
Most available 3D human brain atlases provide information only at a macroscopic level, while 2D atlases are often at a microscopic level but lack 3D integration. A 3D atlas defined upon fine-grain anatomical detail of cortical layers and cells is necessary to fully understand neurobiological processes. “BigBrain,” a high-resolution 3D model of a human brain at nearly cellular resolution, was released in 2013. This unique dataset enables the extraction of microscopic data for utilization in brain mapping, modeling and simulation. We propose an automated 3D cortical parcellation of the BigBrain volume into functionally-meaningful areas in order to create a modern high-resolution 3D cytoarchitectural atlas that will complement existing brain atlases. We use a distance metrics-based framework for BigBrain parcellation, and perform comparative analyses of our results with existing atlases (Brodmann and JuBrain atlases). This work has immediate application in teaching, neurosurgery, cognitive neuroscience, and imaging-based brain mapping.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.E., Bludau, S., Bazin, P.L., Lewis, L.B., Oros-Peusquens, A.M., Shah, N.J., Lippert, T., Zilles, K., Evans, A.C.: BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013)
Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde. Johann Ambrosius Bart, Leipzig (1909)
Mohlberg, H., Eickhoff, S.B., Schleicher, A., Zilles, K., Amunts, K.: A new processing pipeline and release of cytoarchitectonic probabilistic maps – JuBrain. In: 18th Annual Meeting of the Organization for Human Brain Mapping, Beijing, China (2012)
Schleicher, A., Palomero-Gallagher, N., Morosan, P., Eickhoff, S.B., Kowalski, T., de Vos, K., Amunts, K., Zilles, K.: Quantitative architectural analysis: a new approach to cortical mapping. Anatomy Embryol. 210, 373–386 (2005)
Hemanth, D.J., Selva Vijila, C.K., Selvakumar, A.I., Anitha, J.: Distance metric-based time-efficient fuzzy algorithm for abnormal magnetic resonance brain image segmentation. Neural Comput. Appl. 22, 1013–1022 (2013)
Sanchez-Panchuelo, R.M., Besle, J., Beckett, A., Bowtell, R., Schluppeck, D., Francis, S.: Within-digit functional parcellation of brodmann areas of the human primary somatosensory cortex using functional magnetic resonance imaging at 7 tesla. J. Neurosci. 32, 15815–15822 (2012)
Kong, Y., Wang, D., Shi, L., Hui, S.C.N., Chu, W.C.W.: Adaptive distance metric learning for diffusion tensor image segmentation. PLoS ONE 9, e92069 (2014)
Chaves, R., Ramírez, J., Górriz, J.M., Illán, I., Segovia, F., Olivares, A.: Effective diagnosis of alzheimer’s disease by means of distance metric learning and random forest. In: Ferrández, J.M., Álvarez Sánchez, J.R., Paz, F., Toledo, F.J. (eds.) IWINAC 2011. LNCS, vol. 6687, pp. 59–67. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21326-7_7
Uylingsa, H.B.M., Sanz-Arigita, E.J., de Vos, K., Pool, C.W., Evers, P., Rajkowska, G.: 3-D cytoarchitectonic parcellation of human orbitofrontal cortex correlation with postmortem MRI. Psychiatry Res. Neuroimaging 183, 1–20 (2010)
Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., Zilles, K.: The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage 33, 430–448 (2006)
Altinkaya, A., Lepage, C., Lewis, L.B., Toussaint, P.J., Amunts, K., Zilles, K., Evans, A.C., Sadikot, A.F.: Ultrahigh resolution 3-d volumetric atlas of the human basal ganglia. In: 21st Annual Meeting of the Organization for Human Brain Mapping, Honolulu, USA (2015)
Altinkaya, A., Lepage, C., Ferreira, M., Pike, G.B., Evans, A.C., Sadikot A.F.: Registration of the bigbrain basal ganglia atlas to MNI space with surgical applications. In: 21st Annual Meeting of the Organization for Human Brain Mapping, Honolulu, USA (2015)
Bohland, J.W., Bokil, H., Allen, C.B., Mitra, P.P.: The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PLoS ONE 4, e7200 (2009)
Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using laplace’s equation. Hum. Brain Mapping 11, 12–32 (2000)
Leprince, Y., Poupon, F., Delzescaux, T., Hasboun, D., Poupon, C., Riviere, D.: Combined laplacian-equivolumic model for studying cortical lamination with ultra high field MRI (7T). In: 12th IEEE International Symposium on Biomedical Imaging, pp. 580–583. IEEE Press, New York (2015)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)
Toews, M., Wells, W.M.: Efficient and robust model-to-image alignment using 3D scale-invariant features. Med. Image Anal. 17, 271–282 (2013)
Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to action recognition. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 357–360. AMC Press, New York (2007)
Golias, N.A., Dutton, R.W.: Delaunay triangulation and 3D adaptive mesh generation. Finite Elements Anal. Des. 25, 331–341 (1997)
Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007)
Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2, 49–55 (1936)
Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al.: An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)
Shannon, C.E.: A mathematical theory of communication. Bell Labs Tech. J. 27, 379–423 (1948)
Acknowledgements
We acknowledge funding support from the Canadian Institutes of Health Research (CIHR) and from Canada’s Advanced Research and Innovation Network (CANARIE). We thank Compute Canada for continued support accessing the Compute Canada HPC grid through the CBRAIN software portal. We also thank Svenja Caspers for helpful discussion and providing expertise in neuroanatomy as well as Katrin Amunts and Karl Zilles from the Jülich Research Centre in Germany.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fournier, M., Lewis, L.B., Evans, A.C. (2017). BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases. In: Müller, H., et al. Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging. BAMBI MCV 2016 2016. Lecture Notes in Computer Science(), vol 10081. Springer, Cham. https://doi.org/10.1007/978-3-319-61188-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-61188-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61187-7
Online ISBN: 978-3-319-61188-4
eBook Packages: Computer ScienceComputer Science (R0)