Abstract
Diffusion Tensor Imaging (DTI) has been used to study the characteristics of Multiple Sclerosis (MS) in the brain. The von Mises-Fisher distribution (vmf) is a probability distribution for modeling directional data on the unit hypersphere. In this paper we modeled the diffusion directions of the Corpus Callosum (CC) as a mixture of vmf distributions for both MS subjects and healthy controls. Higher diffusion concentration around the mean directions and smaller sum of angles between the mean directions are observed on the normal-appearing CC of the MS subjects as compared to the healthy controls.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mardia, K.V., Jupp, P.E.: Directional Statistics, vol. 494. Wiley, Hoboken (2009)
Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)
McGraw, T., Vemuri, B., Yezierski, R., Mareci, T.: Segmentation of high angular resolution diffusion MRI modeled as a field of von Mises-Fisher mixtures. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 463–475. Springer, Heidelberg (2006). doi:10.1007/11744078_36
Bhalerao, A., Westin, C.-F.: Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 236–243. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75757-3_29
Kumar, R., Barmpoutis, A ., Vemuri, B.C., Carney, P.R., Mareci, T.H.: Multi-fiber reconstruction from DW-MRI using a continuous mixture of von Mises-Fisher distributions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2008, pp. 1–8. IEEE (2008)
Zhang, F., Hancock, E.D., Goodlett, C., Gerig, G.: Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling. Med. Image Anal. 13(1), 5–18 (2009)
Painter, K.J., Hillen, T.: Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion. J. Theor. Biol. 323, 25–39 (2013)
Reynolds, G.K., Nir, T.M., Jahanshad, N., Prasad, G., Thompson, P.M.: Using the raw diffusion MRI signal and the von Mises-Fisher distribution for classification of Alzheimer’s disease. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 1027–1030. IEEE (2014)
Werring, D.J., Clark, C.A., Barker, G.J., Thompson, A.J., Miller, D.H.: Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52(8), 1626–1626 (1999)
Guo, A.C., MacFall, J.R., Provenzale, J.M.: Multiple sclerosis: diffusion tensor MR imaging for evaluation of normal-appearing white matter 1. Radiology 222(3), 729–736 (2002)
Ge, Y., Law, M., Johnson, G., Herbert, J., Babb, J.S., Mannon, L.J., Grossman, R.I.: Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging. J. Magn. Reson. Imaging 20(1), 1–7 (2004)
Hesseltine, S.M., Law, M., Babb, J., Rad, M., Lopez, S., Ge, Y., Johnson, G., Grossman, R.I.: Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. Am. J. Neuroradiol. 27(6), 1189–1193 (2006)
Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Chunshui, Y., Dong, H., Ye, J., He, Y.: Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb. Cortex 21(11), 2565–2577 (2011)
Yaldizli, Ö., Pardini, M., Sethi, V., Muhlert, N., Liu, Z., Tozer, D.J., Samson, R.S., Wheeler-Kingshott, C.A.M., Yousry, T.A., Miller, D.H., et al.: Characteristics of lesional and extra-lesional cortical grey matter in relapsing-remitting and secondary progressive multiple sclerosis: a magnetisation transfer and diffusion tensor imaging study. Mult. Scler. J. 22(2), 150–159 (2016)
Elsheikh, S., Fish, A., Chakrabarti, R., Zhou, D.: Cluster analysis of diffusion tensor fields with application to the segmentation of the corpus callosum. Procedia Comput. Sci. 90, 15–21 (2016)
Hornik, K., Grün, B.: movMF: an R package for fitting mixtures of von Mises-Fisher distributions. J. Stat. Softw. 58(10), 1–31 (2014)
Witelson, S.F.: Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain 112(3), 799–835 (1989)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Elsheikh, S., Fish, A., Chakrabarti, R., Zhou, D., Cercignani, M. (2017). Modeling Diffusion Directions of Corpus Callosum. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-60964-5_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60963-8
Online ISBN: 978-3-319-60964-5
eBook Packages: Computer ScienceComputer Science (R0)