[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Modeling Diffusion Directions of Corpus Callosum

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Included in the following conference series:

  • 3173 Accesses

Abstract

Diffusion Tensor Imaging (DTI) has been used to study the characteristics of Multiple Sclerosis (MS) in the brain. The von Mises-Fisher distribution (vmf) is a probability distribution for modeling directional data on the unit hypersphere. In this paper we modeled the diffusion directions of the Corpus Callosum (CC) as a mixture of vmf distributions for both MS subjects and healthy controls. Higher diffusion concentration around the mean directions and smaller sum of angles between the mean directions are observed on the normal-appearing CC of the MS subjects as compared to the healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mardia, K.V., Jupp, P.E.: Directional Statistics, vol. 494. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  2. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  3. McGraw, T., Vemuri, B., Yezierski, R., Mareci, T.: Segmentation of high angular resolution diffusion MRI modeled as a field of von Mises-Fisher mixtures. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 463–475. Springer, Heidelberg (2006). doi:10.1007/11744078_36

    Chapter  Google Scholar 

  4. Bhalerao, A., Westin, C.-F.: Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 236–243. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75757-3_29

    Chapter  Google Scholar 

  5. Kumar, R., Barmpoutis, A ., Vemuri, B.C., Carney, P.R., Mareci, T.H.: Multi-fiber reconstruction from DW-MRI using a continuous mixture of von Mises-Fisher distributions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Zhang, F., Hancock, E.D., Goodlett, C., Gerig, G.: Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling. Med. Image Anal. 13(1), 5–18 (2009)

    Article  Google Scholar 

  7. Painter, K.J., Hillen, T.: Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion. J. Theor. Biol. 323, 25–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Reynolds, G.K., Nir, T.M., Jahanshad, N., Prasad, G., Thompson, P.M.: Using the raw diffusion MRI signal and the von Mises-Fisher distribution for classification of Alzheimer’s disease. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 1027–1030. IEEE (2014)

    Google Scholar 

  9. Werring, D.J., Clark, C.A., Barker, G.J., Thompson, A.J., Miller, D.H.: Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52(8), 1626–1626 (1999)

    Article  Google Scholar 

  10. Guo, A.C., MacFall, J.R., Provenzale, J.M.: Multiple sclerosis: diffusion tensor MR imaging for evaluation of normal-appearing white matter 1. Radiology 222(3), 729–736 (2002)

    Article  Google Scholar 

  11. Ge, Y., Law, M., Johnson, G., Herbert, J., Babb, J.S., Mannon, L.J., Grossman, R.I.: Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging. J. Magn. Reson. Imaging 20(1), 1–7 (2004)

    Article  Google Scholar 

  12. Hesseltine, S.M., Law, M., Babb, J., Rad, M., Lopez, S., Ge, Y., Johnson, G., Grossman, R.I.: Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. Am. J. Neuroradiol. 27(6), 1189–1193 (2006)

    Google Scholar 

  13. Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Chunshui, Y., Dong, H., Ye, J., He, Y.: Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb. Cortex 21(11), 2565–2577 (2011)

    Article  Google Scholar 

  14. Yaldizli, Ö., Pardini, M., Sethi, V., Muhlert, N., Liu, Z., Tozer, D.J., Samson, R.S., Wheeler-Kingshott, C.A.M., Yousry, T.A., Miller, D.H., et al.: Characteristics of lesional and extra-lesional cortical grey matter in relapsing-remitting and secondary progressive multiple sclerosis: a magnetisation transfer and diffusion tensor imaging study. Mult. Scler. J. 22(2), 150–159 (2016)

    Article  Google Scholar 

  15. Elsheikh, S., Fish, A., Chakrabarti, R., Zhou, D.: Cluster analysis of diffusion tensor fields with application to the segmentation of the corpus callosum. Procedia Comput. Sci. 90, 15–21 (2016)

    Article  Google Scholar 

  16. Hornik, K., Grün, B.: movMF: an R package for fitting mixtures of von Mises-Fisher distributions. J. Stat. Softw. 58(10), 1–31 (2014)

    Article  Google Scholar 

  17. Witelson, S.F.: Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain 112(3), 799–835 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Elsheikh, S., Fish, A., Chakrabarti, R., Zhou, D., Cercignani, M. (2017). Modeling Diffusion Directions of Corpus Callosum. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics