Abstract
What should a legged robot do when it slips? When traction is lost, the locomotion can be irreversibly hampered. Being able to detect slippage at the very beginning and promptly recover the traction is crucial for body stability and can make the difference in a situation where falling is not an option. Indeed, the majority of locomotion controllers and state estimation algorithms rely on the assumption that the stance feet are not slipping. The following work presents a methodology for slip detection and estimation of the friction parameters, plus a recovery strategy which exploits the capabilities of a whole body controller, implemented for locomotion, which optimizes for the ground reaction forces (GRFs). The estimation makes use only of proprioceptive sensors (no vision). Even though the essence of the approach is quite general, the implementation is specialized for the quadruped robot HyQ. Simulation results demonstrate the effectiveness of the proposed approach while walking on challenging terrains (a slippery ramp or an ice slab).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Video available at http://www.youtube.com/watch?v=cNZPRsrwumQ.
- 2.
Video available at https://youtu.be/Hrwi9-411AM.
References
Abe, Y., da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 249–258 (2007)
Aly, A.a: An antilock-braking systems (ABS) control: a technical review. Intell. Control Autom. 02(03), 186–195 (2011)
Bloesch, M., Hutter, M., Hoepflinger, M., Leutenegger, S., Gehring, C., Remy, C.D., Siegwart, R.: State estimation for legged robots-consistent fusion of leg kinematics and IMU. In: Robotics: Science and Systems (2012)
Bretl, T., Lall, S.: Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–807 (2008)
Caron, S., Pham, Q.-c., Nakamura, Y.: Leveraging cone double description for multi-contact stability of humanoids with applications to statics and dynamics. In: Robotics: Science and Systems (2015)
Chilian, A., Hirschmüller, H., Görner, M.: Multisensor data fusion for robust pose estimation of a six-legged walking robot. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2497–2504 (2011)
Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Boston (2008)
Feng, S., Xinjilefu, X., Huang, W., Atkeson, C.G.: 3D walking based on online optimization. In: 13th IEEE-RAS International Conference on Humanoid Robots (2013)
Focchi, M., Del Prete, A., Havoutis, I., Featherstone, R., Cald-well, D. G., Semini, C.: High-slope terrain locomotion for torque-controlled quadruped robots. Autonomous Robots 41(1), 259–272. doi:10.1007/s10514-016-9573-1 (2017)
Focchi, M., Prete, A., Havoutis, I., Featherstone, R., Caldwell, D.G., Semini, C.: Ground reaction forces control for torque-controlled quadruped robots. In: IEEE International Conference on Intelligent Robots and Systems: Workshop on Whole-Body Control for Robots in the Real World (2014)
Frigerio, M., Buchli, J., Caldwell, D.G.: Code generation of algebraic quantities for robot controllers. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2346–2351, October 2012
Gramkow, C.: On averaging rotations. J. Math. Imaging Vis. 15(1–2), 7–16 (2001)
Haessig, D.a., Friedland, B.: On the modeling and simulation of friction. In: American Control Conference, pp. 1256–1261 (1990)
Herzog, A., Righetti, L., Grimminger, F., Pastor, P., Schaal, S.: Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 981–988. IEEE (2014)
Holweg, E., Hoeve, H., Jongkind, W., Marconi, L., Melchiorri, C., Bonivento, C.: Slip detection by tactile sensors: algorithms and experimental results. In: IEEE International Conference on Robotics and Automation, vol. 09, 3234–3239 (1996)
Izumi, I., Nakamura, T., Sack, R.L.: In: Snow Engineering: Recent Advances: Proceedings of the Third International Conference, Sendai, Japan, 26–31 May 1996. CRC Press (1997)
Klasing, K., Althoff, D., Wollherr, D., Buss, M.: Comparison of surface normal estimation methods for range sensing applications. In: IEEE International Conference on Robotics and Automation, pp. 3206–3211 (2009)
Kuindersma, S., Permenter, F., Tedrake, R., Bu, A.: An efficiently solvable quadratic program for stabilizing dynamic locomotion. In: IEEE International Conference on Robotics and Automation, pp. 2589–2594 (2014)
Lide, D.R.: CRC Handbook of Chemistry and Physics, vol. 53, 94th edn. CRC Press, Boca Raton (2013)
Melchiorri, C.: Slip detection and control using tactile and force sensors. IEEE/ASME Trans. Mechatronics 5(3), 235–243 (2000)
Palli, G., Moriello, L., Scarcia, U., Melchiorri, C.: Development of an optoelectronic 6-axis force/torque sensor for robotic applications. Sensors Actuators A Phys. 220, 333–346 (2014)
Rusu, R.B.: Semantic 3d object maps for everyday manipulation in human living environments. PhDThesis 24(4), 345–348 (2010)
Schaal, S.: The SL simulation and real-time control software package. Technical Report, Accessed Aug 2015 at http://www-clmc.usc.edu/publications/S/schaal-TRSL.pdf (2006)
Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ - a hydraulically and electrically actuated quadruped robot. Proc. Instit. Mech. Eng. Part I J. Syst. Control Eng. 225(6), 831–849 (2011)
Stewart, D., Trinkle, J.: An implicit time-stepping scheme for rigid body dynamics with Coulomb friction. In: IEEE International Conference on Robotics and Automation, vol. 1 (2000)
Takemura, H., Deguchi, M., Ueda, J., Matsumoto, Y., Ogasawara, T.: Slip-adaptive walk of quadruped robot. Robot. Auton. Syst. 53(2), 124–141 (2005)
Vukobratović, M., Frank, A.A., Juricić, D.: On the stability of biped locomotion. IEEE Trans. Bio-Med. Eng. 17(1), 25–36 (1970)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Focchi, M., Barasuol, V., Frigerio, M., Caldwell, D.G., Semini, C. (2018). Slip Detection and Recovery for Quadruped Robots. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-60916-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60915-7
Online ISBN: 978-3-319-60916-4
eBook Packages: EngineeringEngineering (R0)