[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Method of Object Re-identiciation Applicable to Multicamera Surveillance Systems

  • Conference paper
  • First Online:
Multimedia Communications, Services and Security (MCSS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 785))

  • 440 Accesses

Abstract

The paper addresses some challenges pertaining to the methods for tracking of objects in multi-camera systems. The tracking methods related to a single Field of Vision (FOV) are quite different from inter-camera tracking, especially in case of non-overlapping FOVs. In this case, the processing is directed to determine the probability of a particular object’s identity seen in a pair of cameras in the presence of places non-observed by any camera, thus an object can disappear in one observed region and then re-appear in another one. A methodology for evaluation of the introduced re-identification method is presented in the paper. Problems related to the preparation of the ground-truth database and to the impact of a single-camera tracking on the efficiency of the re-identification algorithm are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32

    Chapter  Google Scholar 

  2. Cheng, Y., Huang, C., Fu, L.: Multiple people visual tracking in a multi-camera system for cluttered environments. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 675–680, October 2006

    Google Scholar 

  3. Colombo, A., Orwell, J., Velastin, S.: Colour constancy techniques for re-recognition of pedestrians from multiple surveillance cameras. In: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, pp. 1–13 (2008)

    Google Scholar 

  4. Czyżewski, A., Szwoch, G., Dalka, P., Szczuko, P., Ciarkowski, A., Ellwart, D., Merta, T., Łopatka, K., Kulasek, Ł., Wolski, J.: Multi-stage video analysis framework. In: Weiyao, L. (ed.) Video Surveillance, Chap. 9, pp. 145–171. Intech (2011). http://dx.doi.org/10.5772/16088

  5. Czyżewski, A., Dalka, P.: Moving object detection and tracking for the purpose of multimodal surveillance system in urban areas. In: Tsihrintzis, G., Virvou, M., Howlett, R., Jain, L. (eds.) New Directions in Intelligent Interactive Multimedia. SCI, vol. 142, pp. 75–84. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68127-4_8

    Chapter  Google Scholar 

  6. Czyżewski, A., Lisowski, K.: Adaptive method of adjusting flowgraph for route reconstruction in video surveillance systems. Fundam. Inf. 127(1–4), 561–576 (2013). http://dx.doi.org/10.3233/FI-2013-927

    MathSciNet  Google Scholar 

  7. Czyzewski, A., Lisowski, K.: Employing flowgraphs for forward route reconstruction in video surveillance system. J. Intell. Inf. Syst. 43(3), 521–535 (2014). http://dx.doi.org/10.1007/s10844-013-0253-8

    Article  Google Scholar 

  8. Dalka, P., Ellwart, D., Szwoch, G., Lisowski, K., Szczuko, P., Czyżewski, A.: Selection of visual descriptors for the purpose of multi-camera object re-identification. In: Stańczyk, U., Jain, L.C. (eds.) Feature Selection for Data and Pattern Recognition. SCI, vol. 584, pp. 263–303. Springer, Heidelberg (2015). doi:10.1007/978-3-662-45620-0_12

    Google Scholar 

  9. Dalka, P., Szwoch, G., Ciarkowski, A.: Distributed framework for visual event detection in parking lot area. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 37–45. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21512-4_5

    Chapter  Google Scholar 

  10. Dalka, P., Szwoch, G., Szczuko, P., Czyzewski, A.: Video content analysis in the urban area telemonitoring system. In: Tsihrintzis, G.A., Jain, L.C. (eds.) Multimedia Services in Intelligent Environments, pp. 241–261. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13396-1_11

    Chapter  Google Scholar 

  11. Javed, O.: Appearance modeling for tracking in multiple non-overlapping cameras. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 26–33 (2005)

    Google Scholar 

  12. Kim, H., Romberg, J., Wolf, W.: Multi-camera tracking on a graph using Markov Chain Monte Carlo. In: Third ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2009, pp. 1–8, August 2009

    Google Scholar 

  13. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real Time Imaging 11(3), 172–185 (2005). http://dx.doi.org/10.1016/j.rti.2004.12.004

    Article  Google Scholar 

  14. Lev-Tov, A., Moses, Y.: Path recovery of a disappearing target in a large network of cameras. In: Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2010, pp. 57–64. ACM, New York (2010). http://doi.acm.org/10.1145/1865987.1865997

  15. Lisowski, K., Czyzewski, A.: Complexity analysis of the Pawlak’s flowgraph extension for re-identification in multi-camera surveillance system. Multimedia Tools Appl. 75, 1–17 (2015). http://dx.doi.org/10.1007/s11042-015-2652-z

    Google Scholar 

  16. Loy, C.C., Xiang, T., Gong, S.: Time-delayed correlation analysis for multi-camera activity understanding. International J. Comput. Vis. 90(1), 106–129 (2010). https://doi.org/10.1007/s11263-010-0347-5

    Article  Google Scholar 

  17. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2227–2240 (2014)

    Article  Google Scholar 

  18. Pawlak, Z.: Rough sets and flow graphs. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 1–11. Springer, Heidelberg (2005). doi:10.1007/11548669_1

    Chapter  Google Scholar 

  19. Pawlak, Z.: Flow graphs and data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 1–36. Springer, Heidelberg (2005). doi:10.1007/11427834_1

    Chapter  Google Scholar 

  20. Radke, R.J.: A survey of distributed computer vision algorithms. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments, pp. 35–55. Springer, Boston (2010). doi:10.1007/978-0-387-93808-0_2

    Chapter  Google Scholar 

  21. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 2246–2252. IEEE Computer Society (1999)

    Google Scholar 

  22. Szwoch, G.: Performance evaluation of the parallel codebook algorithm for background subtraction in video stream. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 149–157. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21512-4_18

    Chapter  Google Scholar 

  23. Tesfaye, Y., Mequanint, E., Prati, A., Pelillo, M., Shah, M.: Multi-target tracking in multiple non-overlapping cameras using constrained dominant sets, June 2017

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Polish National Science Centre within the grant belonging to the program “Preludium” No. 277900 entitled: Methods for design of the camera network topology aimed to re-identification and tracking objects on the basis of behavior modelling with the flow graph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Lisowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lisowski, K., Czyżewski, A. (2017). A Method of Object Re-identiciation Applicable to Multicamera Surveillance Systems. In: Dziech, A., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2017. Communications in Computer and Information Science, vol 785. Springer, Cham. https://doi.org/10.1007/978-3-319-69911-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69911-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69910-3

  • Online ISBN: 978-3-319-69911-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics