Abstract
The paper addresses some challenges pertaining to the methods for tracking of objects in multi-camera systems. The tracking methods related to a single Field of Vision (FOV) are quite different from inter-camera tracking, especially in case of non-overlapping FOVs. In this case, the processing is directed to determine the probability of a particular object’s identity seen in a pair of cameras in the presence of places non-observed by any camera, thus an object can disappear in one observed region and then re-appear in another one. A methodology for evaluation of the introduced re-identification method is presented in the paper. Problems related to the preparation of the ground-truth database and to the impact of a single-camera tracking on the efficiency of the re-identification algorithm are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32
Cheng, Y., Huang, C., Fu, L.: Multiple people visual tracking in a multi-camera system for cluttered environments. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 675–680, October 2006
Colombo, A., Orwell, J., Velastin, S.: Colour constancy techniques for re-recognition of pedestrians from multiple surveillance cameras. In: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, pp. 1–13 (2008)
Czyżewski, A., Szwoch, G., Dalka, P., Szczuko, P., Ciarkowski, A., Ellwart, D., Merta, T., Łopatka, K., Kulasek, Ł., Wolski, J.: Multi-stage video analysis framework. In: Weiyao, L. (ed.) Video Surveillance, Chap. 9, pp. 145–171. Intech (2011). http://dx.doi.org/10.5772/16088
Czyżewski, A., Dalka, P.: Moving object detection and tracking for the purpose of multimodal surveillance system in urban areas. In: Tsihrintzis, G., Virvou, M., Howlett, R., Jain, L. (eds.) New Directions in Intelligent Interactive Multimedia. SCI, vol. 142, pp. 75–84. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68127-4_8
Czyżewski, A., Lisowski, K.: Adaptive method of adjusting flowgraph for route reconstruction in video surveillance systems. Fundam. Inf. 127(1–4), 561–576 (2013). http://dx.doi.org/10.3233/FI-2013-927
Czyzewski, A., Lisowski, K.: Employing flowgraphs for forward route reconstruction in video surveillance system. J. Intell. Inf. Syst. 43(3), 521–535 (2014). http://dx.doi.org/10.1007/s10844-013-0253-8
Dalka, P., Ellwart, D., Szwoch, G., Lisowski, K., Szczuko, P., Czyżewski, A.: Selection of visual descriptors for the purpose of multi-camera object re-identification. In: Stańczyk, U., Jain, L.C. (eds.) Feature Selection for Data and Pattern Recognition. SCI, vol. 584, pp. 263–303. Springer, Heidelberg (2015). doi:10.1007/978-3-662-45620-0_12
Dalka, P., Szwoch, G., Ciarkowski, A.: Distributed framework for visual event detection in parking lot area. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 37–45. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21512-4_5
Dalka, P., Szwoch, G., Szczuko, P., Czyzewski, A.: Video content analysis in the urban area telemonitoring system. In: Tsihrintzis, G.A., Jain, L.C. (eds.) Multimedia Services in Intelligent Environments, pp. 241–261. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13396-1_11
Javed, O.: Appearance modeling for tracking in multiple non-overlapping cameras. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 26–33 (2005)
Kim, H., Romberg, J., Wolf, W.: Multi-camera tracking on a graph using Markov Chain Monte Carlo. In: Third ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2009, pp. 1–8, August 2009
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real Time Imaging 11(3), 172–185 (2005). http://dx.doi.org/10.1016/j.rti.2004.12.004
Lev-Tov, A., Moses, Y.: Path recovery of a disappearing target in a large network of cameras. In: Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2010, pp. 57–64. ACM, New York (2010). http://doi.acm.org/10.1145/1865987.1865997
Lisowski, K., Czyzewski, A.: Complexity analysis of the Pawlak’s flowgraph extension for re-identification in multi-camera surveillance system. Multimedia Tools Appl. 75, 1–17 (2015). http://dx.doi.org/10.1007/s11042-015-2652-z
Loy, C.C., Xiang, T., Gong, S.: Time-delayed correlation analysis for multi-camera activity understanding. International J. Comput. Vis. 90(1), 106–129 (2010). https://doi.org/10.1007/s11263-010-0347-5
Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2227–2240 (2014)
Pawlak, Z.: Rough sets and flow graphs. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 1–11. Springer, Heidelberg (2005). doi:10.1007/11548669_1
Pawlak, Z.: Flow graphs and data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 1–36. Springer, Heidelberg (2005). doi:10.1007/11427834_1
Radke, R.J.: A survey of distributed computer vision algorithms. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments, pp. 35–55. Springer, Boston (2010). doi:10.1007/978-0-387-93808-0_2
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 2246–2252. IEEE Computer Society (1999)
Szwoch, G.: Performance evaluation of the parallel codebook algorithm for background subtraction in video stream. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 149–157. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21512-4_18
Tesfaye, Y., Mequanint, E., Prati, A., Pelillo, M., Shah, M.: Multi-target tracking in multiple non-overlapping cameras using constrained dominant sets, June 2017
Acknowledgements
This work has been partially funded by the Polish National Science Centre within the grant belonging to the program “Preludium” No. 277900 entitled: Methods for design of the camera network topology aimed to re-identification and tracking objects on the basis of behavior modelling with the flow graph.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lisowski, K., Czyżewski, A. (2017). A Method of Object Re-identiciation Applicable to Multicamera Surveillance Systems. In: Dziech, A., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2017. Communications in Computer and Information Science, vol 785. Springer, Cham. https://doi.org/10.1007/978-3-319-69911-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-69911-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69910-3
Online ISBN: 978-3-319-69911-0
eBook Packages: Computer ScienceComputer Science (R0)