Abstract
The paper presents application of multinomial logistic regression for color segmentation. The common problem in the subject of image understanding is creation of a large enough corpus for algorithm training. Especially when a large set of classes has to be recognized or if using convolutional neural networks the size and diversity of the training set strongly influences the quality of the resulting system. We present a method of automated generation of training samples by combining a well-known green box technique with multinomial logistic regression for background substitution. We show the encountered problems and their solutions. We present numerous examples of algorithm performance in background substitution. We conclude the paper with presentation of other examples of application of logistic regression for image understanding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Authors have GLSL implementation achieving real time speed processing of full HD images on Samsung galaxy S III.
References
Baran, R., Zeja, A.: The imcop system for data enrichment and content discovery and delivery. In: 2015 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 143–146, December 2015
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)
Cheng, V., Kehtarnavaz, N.: A smart camera application: Dsp-based people detection and tracking. J. Electron. Imaging 9(3), 336–346 (2000). http://dx.doi.org/10.1117/1.482749
Chmiel, W., Szwed, P.: Learning fuzzy cognitive map for traffic prediction using an evolutionary algorithm. In: Dziech, A., Leszczuk, M., Baran, R. (eds.) MCSS 2015. CCIS, vol. 566, pp. 195–209. Springer, Cham (2015). doi:10.1007/978-3-319-26404-2_16
Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Probabilistic posture classification for human-behavior analysis. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 35(1), 42–54 (2005)
Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000). doi:10.1007/3-540-45053-X_48
Eshkol, A., Grega, M., Leszczuk, M., Weintraub, O.: Practical application of near duplicate detection for image database. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2014. CCIS, vol. 429, pp. 73–82. Springer, Cham (2014). doi:10.1007/978-3-319-07569-3_6
Grega, M., Bryk, D., Napora, M.: Inact-indect advanced image cataloguing tool. Multimedia Tools Appl. 68(1), 95–110 (2014). http://dx.doi.org/10.1007/s11042-012-1164-3
Haritaoglu, I., Harwood, D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn. Springer, New York (2009). https://books.google.pl/books?id=tVIjmNS3Ob8C
Inaguma, T., Saji, H., Nakatani, H.: Hand motion tracking based on a constraint of three-dimensional continuity. J. Electron. Imaging 14(1), 013021-1–013021-9 (2005). http://dx.doi.org/10.1117/1.1867473
James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer, New York (2014). https://books.google.pl/books?id=at1bmAEACAAJ
KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–144. Springer US, Boston (2002). https://doi.org/10.1007/978-1-4615-0913-4_11
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005). http://dx.doi.org/10.1016/j.rti.2004.12.004
Leszczuk, M., Juszka, D., Janowski, L., Grega, M., Cruz, R., Nunes, M., Patrikakis, C., Papapanagiotou, S.: Quality aware, adaptive, 3D media distribution over P2P architectures. In: 2013 IEEE Globecom Workshops (GC Wkshps), pp. 1133–1138, December 2013
Makris, D., Ellis, T.: Learning semantic scene models from observing activity in visual surveillance. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(3), 397–408 (2005)
MathWorks: Statistics and machine learning toolbox user’s guide. Technical report, MathWorks, Inc. (2015). http://www.mathworks.com/help/releases/R2015a/pdf_doc/stats/stats.pdf
Mineiro, P.: fastapprox - fast approximate functions. https://code.google.com/archive/p/fastapprox/
Neves, C.: Categorical Data Analysis, 3rd edn., p. 41 (2014)
Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)
Rusek, K., Guzik, P.: Two-stage neural network regression of eye location in face images. Multimedia Tools Appl. 75(17), 10617–10630 (2016). https://doi.org/10.1007/s11042-014-2114-z
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 2, p. 252 (1999)
Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19, 780–785 (1997)
Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31, August 2004
Acknowledgment
This work was supported by the Polish National Center for Research and Development under the LIDER Grant (No. LIDER/354/L-6/14/NCBR/2015).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Grega, M. et al. (2017). Application of Logistic Regression for Background Substitution. In: Dziech, A., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2017. Communications in Computer and Information Science, vol 785. Springer, Cham. https://doi.org/10.1007/978-3-319-69911-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-69911-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69910-3
Online ISBN: 978-3-319-69911-0
eBook Packages: Computer ScienceComputer Science (R0)