Abstract
Performance evaluation of selected complex video processing algorithms, implemented on a parallel, embedded GPU platform Tegra X1, is presented. Three algorithms were chosen for evaluation: a GMM-based object detection algorithm, a particle filter tracking algorithm and an optical flow based algorithm devoted to people counting in a crowd flow. The choice of these algorithms was based on their computational complexity and parallel structure. The aim of the experiments was to assess whether the current generation of low-power, mobile GPUs has sufficient power for running live analysis of video surveillance streams, e.g. in smart cameras, while maintaining energy consumption at a reasonable level. Tests were performed with both a synthetic benchmark and a real video surveillance recording. It was found that the computational power of the tested platform is sufficient for running operations such as background subtraction, but in case of more complex algorithms, such as tracking with particle filters, performance is not satisfactory because of inefficient memory architecture which stalls the processing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CUDA C best practices guide. http://docs.nvidia.com/cuda/cuda-c-best-practices-guide. Accessed 30 Dec 2016
NVIDIA Jetson TX1 module. http://www.nvidia.com/object/jetson-tx1-module.html. Accessed 30 Dec 2016
OpenCV CUDA accelerated computer vision. http://docs.opencv.org/3.0-last-rst/modules/cuda/doc/introduction.html. Accessed 30 Dec 2016
Adarve, J.D., Mahony, R.: A filter formulation for computing real time optical flow. IEEE Robot. Autom. Lett. 1(2), 1192–1199 (2016)
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50(2), 174–188 (2002)
Belbachir, A.N.: Smart Cameras. Springer, Boston (2010). doi:10.1007/978-1-4419-0953-4
Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker. Intel Corporation, Microprocessor Research Labs (2000)
Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
Czyżewski, A., Bratoszewski, P., Ciarkowski, A., Cichowski, J., Lisowski, K., Szczodrak, M., Szwoch, G., Krawczyk, H.: Massive surveillance data processing with supercomputing cluster. Inf. Sci. 296, 322–344 (2015)
Czyzewski, A., Szwoch, G., Dalka, P., Szczuko, P., Ciarkowski, A., Ellwart, D., Merta, T., Lopatka, K., Kulasek, L., Wolski, J.: Multi-stage video analysis framework. In: Video Surveillance, pp. 147–172 (2011)
Gordon, N., Ristic, B., Arulampalam, S.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, London (2004)
Gwosdek, P., Zimmer, H., Grewenig, S., Bruhn, A., Weickert, J.: A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. In: Kutulakos, K.N. (ed.) ECCV 2010. LNCS, vol. 6554, pp. 372–383. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35740-4_29
Hanbury, A.: A 3D-polar coordinate colour representation well adapted to image analysis. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 804–811. Springer, Heidelberg (2003). doi:10.1007/3-540-45103-X_107
Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)
Kim, J.S., Hwangbo, M., Kanade, T.: Parallel algorithms to a parallel hardware: designing vision algorithms for a GPU. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 862–869. IEEE (2009)
Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley, T., Haugou, G., Clermidy, F., Dutoit, D.: Platform 2012, a many-core computing accelerator for embedded SoCs: performance evaluation of visual analytics applications. In: Proceedings of the 49th Annual Design Automation Conference, DAC 2012, pp. 1137–1142. ACM, New York (2012)
Monson, J., Wirthlin, M., Hutchings, B.L.: Implementing high-performance, low-power FPGA-based optical flow accelerators in C. In: 2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors, pp. 363–369. IEEE (2013)
Nummiaro, K., Koller-Meier, E., Van Gool, L.: An adaptive color-based particle filter. Image Vis. Comput. 21(1), 99–110 (2003)
Pauwels, K., Van Hulle, M.M.: Realtime phase-based optical flow on the GPU. In: Computer Vision and Pattern Recognition Workshops, CVPRW 2008, pp. 1–8. IEEE (2008)
Pham, V., Vo, P., Hung, V.T., et al.: GPU implementation of extended gaussian mixture model for background subtraction. In: 2010 IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), pp. 1–4. IEEE (2010)
Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1164–1172. IEEE (2015)
Schwiegelshohn, F., Ossovski, E., Hübner, M.: A fully parallel particle filter architecture for FPGAs. In: Sano, K., Soudris, D., Hübner, M., Diniz, P.C. (eds.) ARC 2015. LNCS, vol. 9040, pp. 91–102. Springer, Cham (2015). doi:10.1007/978-3-319-16214-0_8
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252. IEEE (1999)
Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2014)
Szwoch, G.: Performance evaluation of parallel background subtraction on GPU platforms. Elektronika: konstrukcje, technologie, zastosowania 56(4), 23–27 (2015)
Szwoch, G.: Performance evaluation of the parallel object tracking algorithm employing the particle filter. In: 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 119–124. SPA, September 2016
Szwoch, G., Ellwart, D., Czyzewski, A.: Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform. J. Real Time Image Process. 11(1), 111–125 (2016)
Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical report TR-95041 (2004). https://www.cs.unc.edu/welch/kalman/kalmanIntro.html
Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 120–130. IEEE (2015)
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74936-3_22
Zhang, F., Gao, Y., Bakos, J.D.: Lucas-Kanade optical flow estimation on the TI C66x digital signal processor. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE, September 2014
Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)
Acknowledgment
Project financed partially by the by the Polish National Centre for Research and Development (NCBR) from the European Regional Development Fund under the Operational Programme Innovative Economy No. POIR.04.01.04-00-0089/16 entitled: INZNAK - “Intelligent road signs”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Szwoch, G., Szczodrak, M. (2017). Performance Evaluation of Selected Parallel Object Detection and Tracking Algorithms on an Embedded GPU Platform. In: Dziech, A., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2017. Communications in Computer and Information Science, vol 785. Springer, Cham. https://doi.org/10.1007/978-3-319-69911-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-69911-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69910-3
Online ISBN: 978-3-319-69911-0
eBook Packages: Computer ScienceComputer Science (R0)