[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Order-Sensitive Activity Trajectory Search

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2017 (WISE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10569))

Included in the following conference series:

Abstract

In this paper, we study the problem of order-sensitive activity trajectory search. Given a query containing a set of time-order target locations, the problem is to find the most suitable trajectory from the trajectory database such that the resulting trajectory can achieve the minimum distance from the query. We formulate the problem using two different order-sensitive distance functions: the sum-up objective function, and the maximum objective function. For the sum-up objective function, we propose a dynamic programming (DP) algorithm with time complexity \(O(mn^2)\) where m is the length of the trajectory and n is the number of query locations. To improve the efficiency, we also propose an improved DP algorithm. For the maximum objective function, we propose exact and approximation algorithms to tackle it. The approximation algorithm achieves a near-optimal performance ratio, and it improves the time complexity from \(O(mn^2)\) to \(O(n\log (d/\epsilon ))\) in comparison with the DP algorithm. Extensive experimental studies over both synthetic and real-world datasets demonstrate the efficiency and effectiveness of our approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/.

References

  1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993). doi:10.1007/3-540-57301-1_5

    Chapter  Google Scholar 

  2. Cai, Y., Ng, R.T.: Indexing spatio-temporal trajectories with Chebyshev polynomials. In: SIGMOD (2004)

    Google Scholar 

  3. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: VLDB, pp. 792–803 (2004)

    Chapter  Google Scholar 

  4. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502 (2005)

    Google Scholar 

  5. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: an efficiency study. In: SIGMOD (2010)

    Google Scholar 

  6. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: SIGMOD (1994)

    Google Scholar 

  7. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. PVLDB 1(1), 1068–1080 (2008)

    Google Scholar 

  8. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In: SIGMOD (2007)

    Google Scholar 

  9. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.: Mining user similarity based on location history. In: GIS, p. 34 (2008)

    Google Scholar 

  10. Li, R., Qin, L., Yu, J.X., Mao, R.: Optimal multi-meeting-point route search. IEEE Trans. Knowl. Data Eng. 28(3), 770–784 (2016)

    Article  Google Scholar 

  11. Morse, M.D., Patel, J.M.: An efficient and accurate method for evaluating time series similarity. In: SIGMOD, pp. 569–580 (2007)

    Google Scholar 

  12. Ni, J., Ravishankar, C.V.: Indexing spatio-temporal trajectories with efficient polynomial approximations. IEEE Trans. Knowl. Data Eng. 19(5), 663–678 (2007)

    Article  Google Scholar 

  13. Sefidmazgi, M.G., Sayemuzzaman, M., Homaifar, A.: Non-stationary time series clustering with application to climate systems. In: Jamshidi, M., Kreinovich, V., Kacprzyk, J. (eds.) Advance Trends in Soft Computing. SFSC, vol. 312, pp. 55–63. Springer, Cham (2014). doi:10.1007/978-3-319-03674-8_6

    Chapter  Google Scholar 

  14. Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. IEEE Trans. Knowl. Data Eng. 29(7), 1549–1562 (2017)

    Article  Google Scholar 

  15. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: EDBT (2012)

    Google Scholar 

  16. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)

    Article  Google Scholar 

  17. Sherkat, R., Rafiei, D.: On efficiently searching trajectories and archival data for historical similarities. PVLDB 1(1), 896–908 (2008)

    Google Scholar 

  18. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE, pp. 673–684 (2002)

    Google Scholar 

  19. Yang, A.Y., Jafari, R., Sastry, S., Bajcsy, R.: Distributed recognition of human actions using wearable motion sensor networks. JAISE 1(2), 103–115 (2009)

    Google Scholar 

  20. Yi, B., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: ICDE (1998)

    Google Scholar 

  21. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: ICDE (2013)

    Google Scholar 

Download references

Acknowledgement

The work was supported in part by (i) NSFC Grants (61402292, U1301252, 61033009), NSF-Shenzhen Grants (JCYJ20150324140036826, JCYJ20140418095735561), and Startup Grant of Shenzhen Kongque Program (827/000065). Dr. Zhenjun Li and Prof. Minhua Lu are the corresponding authors of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Guo, K., Li, RH., Qiao, S., Li, Z., Zhang, W., Lu, M. (2017). Efficient Order-Sensitive Activity Trajectory Search. In: Bouguettaya, A., et al. Web Information Systems Engineering – WISE 2017. WISE 2017. Lecture Notes in Computer Science(), vol 10569. Springer, Cham. https://doi.org/10.1007/978-3-319-68783-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68783-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68782-7

  • Online ISBN: 978-3-319-68783-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics