[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Measuring Clustering Model Complexity

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10614))

Included in the following conference series:

Abstract

The capacity of a clustering model can be defined as the ability to represent complex spatial data distributions. We introduce a method to quantify the capacity of an approximate spectral clustering model based on the eigenspectrum of the similarity matrix, providing the ability to measure capacity in a direct way and to estimate the most suitable model parameters. The method is tested on simple datasets and applied to a forged banknote classification problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buhmann, J., Tishby, N.: Empirical risk approximation a statistical learning theory of data clustering. NATO ASI Ser. Ser. F: Comput. Syst. Sci. 57–68 (1998)

    Google Scholar 

  2. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society, Providence (1997)

    Google Scholar 

  3. De Silva, V., Tenenbaum, J.B.: Sparse multidimensional scaling using landmark points. Technical report, Stanford University (2004)

    Google Scholar 

  4. Decelle, A., Krzakala, F., Moore, C., Zdeborová, L.: Inference and phase transitions in the detection of modules in sparse networks. Phys. Rev. Lett. 107(6), 065701 (2011)

    Article  Google Scholar 

  5. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annu. Eugen. 7(Part II), 179–188 (1936)

    Article  Google Scholar 

  6. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer, Boston (1992)

    Book  MATH  Google Scholar 

  7. Gray, R.: Vector quantization. IEEE Acoust. Speech Signal Process. Mag. 1, 4–29 (1984)

    Google Scholar 

  8. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17(2–3), 107–145 (2001)

    Article  MATH  Google Scholar 

  9. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201 (2005)

    Article  Google Scholar 

  10. Lee, M.D.: On the complexity of additive clustering models. J. Math. Psychol. 45(1), 131–148 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  12. Rose, K., Gurewitz, E., Fox, G.: Statistical mechanics and phase transitions in clustering. Phys. Rev. Lett. 65, 945–948 (1990)

    Article  Google Scholar 

  13. Rovetta, S.: Model complexity control in clustering. In: Bassis, S., Esposito, A., Morabito, F.C., Pasero, E. (eds.) Advances in Neural Networks. SIST, vol. 54, pp. 111–120. Springer, Cham (2016). doi:10.1007/978-3-319-33747-0_11

    Chapter  Google Scholar 

  14. Torgerson, W.S.: Theory and Methods of Scaling. Wiley, New York (1958)

    Google Scholar 

  15. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  16. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 907–916. ACM (2009)

    Google Scholar 

  18. Zhou, B., Trinajstić, N.: On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett. 447(4), 384–387 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Rovetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rovetta, S., Masulli, F., Cabri, A. (2017). Measuring Clustering Model Complexity. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68612-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68611-0

  • Online ISBN: 978-3-319-68612-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics