Abstract
This paper deals with multi-label document classification using neural networks. We propose a novel neural network which is composed of two sub-nets: the first one estimates the scores for all classes, while the second one determines the number of classes assigned to the document. The proposed approach is evaluated on Czech and English standard corpora. The experimental results show that the proposed method is competitive with state of the art on both languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
This approach has been proposed in [7].
References
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of Python for Scientific Computing Conference (SciPy), Austin, TX, vol. 4, p. 3 (2010)
Chollet, F.: Keras (2015). https://github.com/fchollet/keras
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence. In: Proceedings of NAACL-HLT, pp. 521–526 (2016)
Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification (2015)
Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, vol. 14, pp. 1188–1196 (2014)
Lenc, L., Král, P.: Deep neural networks for Czech multi-label document classification. In: 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing 2016). Springer, Konya, 3–9 April 2016
Manevitz, L., Yousef, M.: One-class document classification via neural networks. Neurocomputing 70(7–9), 1466–1481 (2007). http://www.scopus.com/inward/record.url?eid=2-s2.0-33847410597&partnerID=40&md5=3d75682f283e19695f2857dea9d9f03f
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)
Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-label text classification - revisiting neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8725, pp. 437–452. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44851-9_28
Powers, D.: Evaluation: from precision, recall and F-measure to ROC., informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)
Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 34(1), 1–47 (2002)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Yang, Y., Gopal, S.: Multilabel classification with meta-level features in a learning-to-rank framework. Mach. Learn. 88(1–2), 47–68 (2012)
Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
Acknowledgements
This work has been supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lenc, L., Král, P. (2017). Two-Level Neural Network for Multi-label Document Classification. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-68612-7_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68611-0
Online ISBN: 978-3-319-68612-7
eBook Packages: Computer ScienceComputer Science (R0)