[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mining of Multiple Fuzzy Frequent Itemsets with Transaction Insertion

  • Conference paper
  • First Online:
Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications (ECC 2017)

Abstract

In this paper, we thus present an algorithm to efficiently update the multiple fuzzy frequent itemsets from the quantitative dataset with transaction insertion. The designed approach is based on the Fast UPdated (FUP) concept to divide the transformed linguistic terms into four cases, and each case is performed by the designed approach for updating the discovered information. Also, the fuzzy-list (FL) structure is adopted to reduce the generation of candidates without multiple database scans. Experiments are conducted to show that the proposed algorithm outperforms the state-of-the-art approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  2. Cheung, D.W., Wong, C.Y., Han, J., Ng, V.T.: Maintenance of discovered association rules in large databases: an incremental updating techniques. In: The International Conference on Data Engineering, pp. 106–114 (1996)

    Google Scholar 

  3. Delgado, M., Marin, N., Sanchez, D., Vila, M.A.: Fuzzy association rules: general model and applications. IEEE Trans. Fuzzy Syst. 11, 214–225 (2003)

    Article  Google Scholar 

  4. Fournier-Viger, P., Lin, J.C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H.T.: The SPMF open-source data mining library version 2 and beyond. In: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery, pp. 36–40 (2016)

    Google Scholar 

  5. Han, J., Jian, P., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Disc. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  6. Hong, T.P., Kuo, C.S., Chi, S.C.: Mining association rules from quantitative data. Intell. Data Anal. 3(5), 363–376 (1999)

    Article  MATH  Google Scholar 

  7. Hong, T.P., Lin, C.W., Wu, Y.L.: Incrementally fast updated frequent pattern trees. Expert Syst. Appl. 34(4), 2424–2435 (2008)

    Article  Google Scholar 

  8. Hong, T.P., Lan, G.C., Lin, Y.H., Pan, S.T.: An effective gradual data-reduction strategy for fuzzy itemset mining. Int. J. Fuzzy Syst. 15(2), 170–181 (2013)

    Google Scholar 

  9. Hong, T.P., Lin, C.W., Lin, T.C.: The MFFP-tree fuzzy mining algorithm to discover complete linguistic frequent itemsets. Comput. Intell. 30(1), 145–166 (2014)

    Article  MathSciNet  Google Scholar 

  10. Kuok, C.M., Fu, A., Wong, M.H.: Mining fuzzy association rules in databases. ACM SIGMOD Rec. 27(1), 41–46 (1998)

    Article  Google Scholar 

  11. Lin, C.W., Hong, T.P., Lu, W.H.: Linguistic data mining with fuzzy fp-trees. Expert Syst. Appl. 37(6), 4560–4567 (2010)

    Article  Google Scholar 

  12. Lin, C.W., Hong, T.P., Lin, T.C.: An efficient tree-based fuzzy data mining approach. Int. J. Fuzzy Syst. 12(2), 150–157 (2010)

    Google Scholar 

  13. Lin, C.W., Hong, T.P., Lu, W.H.: Mining fuzzy frequent itemsets based on UBFFP trees. J. Intell. Fuzzy Syst. 27(1), 535–548 (2014)

    MathSciNet  Google Scholar 

  14. Lin, J.C.W., Hong, T.P., Lin, T.C.: A CMFFP-tree algorithm to mine complete multiple fuzzy frequent itemsets. Appl. Soft Comput. 28(C), 431–439 (2015)

    Google Scholar 

  15. Lin, J.C.W., Hong, T.P., Lin, T.C., Pan, S.T.: An UBMFFP tree for mining multiple fuzzy frequent itemsets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 23(6), 861–879 (2015)

    Article  Google Scholar 

  16. Lin, J.C.W., Li, T., Fournier-Viger, P., Hong, T.P., Wu, J.M.T., Zhan, J.: Efficient mining of multiple fuzzy frequent itemsets. Int. J. Fuzzy Syst. 19(4), 1032–1040 (2017)

    Article  MathSciNet  Google Scholar 

  17. Shitong, W., Chung, K.F.L., Hongbin, S.: Fuzzy taxonomy, quantitative database and mining generalized association rules. Intell. Data Anal. 9(2), 207–217 (2005)

    Google Scholar 

  18. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This research was partially supported by the National Natural Science Foundation of China (NSFC) under grant No. 61503092 and by the Research on the Technical Platform of Rural Cultural Tourism Planning Basing on Digital Media under grant 2017A020220011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Chun-Wei Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Wu, TY., Lin, J.CW., Zhang, Y. (2018). Mining of Multiple Fuzzy Frequent Itemsets with Transaction Insertion. In: Krömer, P., Alba, E., Pan, JS., Snášel, V. (eds) Proceedings of the Fourth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2017. Advances in Intelligent Systems and Computing, vol 682. Springer, Cham. https://doi.org/10.1007/978-3-319-68527-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68527-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68526-7

  • Online ISBN: 978-3-319-68527-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics