[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Distance Geometry in Linearizable Norms

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

Distance Geometry puts the concept of distance at its center. The basic problem in distance geometry could be described as drawing an edge-weighted undirected graph in \(\mathbb {R}^K\) for some given K such that the positions for adjacent vertices have distance which is equal to the corresponding edge weight. There appears to be a lack of exact methods in this field using any other norm but \(\ell _2\). In this paper we move some first steps using the \(\ell _1\) and \(\ell _\infty \) norms: we discuss worst-case complexity, propose mixed-integer linear programming formulations, and sketch a few heuristic ideas.

L. Liberti—Partly supported by the ANR “Bip:Bip” project under contract ANR-10-BINF-0003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beeker, N., Gaubert, S., Glusa, C., Liberti, L.: Is the distance geometry problem in NP? In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications. Springer, New York (2013)

    Google Scholar 

  2. Chiu, W.-Y., Chen, B.-S.: Mobile positioning problem in Manhattan-like urban areas: Uniqueness of solution, optimal deployment of BSs, and fuzzy implementation. IEEE Trans. Sig. Process. 57(12), 4918–4929 (2009)

    Article  MathSciNet  Google Scholar 

  3. COIN-OR. Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT (2006)

    Google Scholar 

  4. Crippen, G.M.: An alternative approach to distance geometry using \(\text{ L } \infty \) distances. Discrete Appl. Math. 197, 20–26 (2015). Distance Geometry and Applications

    Article  MATH  MathSciNet  Google Scholar 

  5. D’Ambrosio, C., Nannicini, G., Sartor, G.: MILP models for the selection of a small set of well-distributed points. Oper. Res. Lett. 45, 46–52 (2017)

    Article  MathSciNet  Google Scholar 

  6. D’Ambrosio, C., Vu, K., Lavor, C., Liberti, L., Maculan, N.: New error measures and methods for realizing protein graphs from distance data. Discrete Comput. Geom. 57(2), 371–418 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dokmanić, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean distance matrices: essential theory, algorithms and applications. IEEE Sig. Process. Mag. 1053–5888, 12–30 (2015)

    Article  Google Scholar 

  8. Erdős, P., Rényi, A.: On random graphs i. Publ. Math. (Debrecen) 6, 290–297 (1959)

    MATH  MathSciNet  Google Scholar 

  9. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98, 23–37 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fréchet, M.: Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, 1–74 (1906)

    Article  MATH  Google Scholar 

  11. Gill, P.E.: User’s guide for SNOPT version 7.2. Systems Optimization Laboratory. Stanford University, California (2006)

    Google Scholar 

  12. Hansen, P., Mladenović, N.: Variable neighbourhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    Article  MATH  Google Scholar 

  13. IBM: ILOG CPLEX 12.6 User’s Manual. IBM (2014)

    Google Scholar 

  14. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Matousek, J.: On the distortion required for embedding finite metric spaces into normed spaces. Isr. J. Math. 93, 333–344 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Matoušek, J.: Lecture notes on metric embeddings. Technical report, ETH Zürich (2013)

    Google Scholar 

  17. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures. Springer, Berlin (2008)

    MATH  Google Scholar 

  18. Saxe, J.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  19. Vu, K., D’Ambrosio, C., Hamadi, Y., Liberti, L.: Surrogate-based methods for black-box optimization. Int. Trans. Oper. Res. 24(3), 393–424 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wüthrich, K.: Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45–50 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia D’Ambrosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

D’Ambrosio, C., Liberti, L. (2017). Distance Geometry in Linearizable Norms. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_95

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics