[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Diffeomorphic Random Sampling Using Optimal Information Transport

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

Abstract

In this article we explore an algorithm for diffeomorphic random sampling of nonuniform probability distributions on Riemannian manifolds. The algorithm is based on optimal information transport (OIT)—an analogue of optimal mass transport (OMT). Our framework uses the deep geometric connections between the Fisher-Rao metric on the space of probability densities and the right-invariant information metric on the group of diffeomorphisms. The resulting sampling algorithm is a promising alternative to OMT, in particular as our formulation is semi-explicit, free of the nonlinear Monge–Ampere equation. Compared to Markov Chain Monte Carlo methods, we expect our algorithm to stand up well when a large number of samples from a low dimensional nonuniform distribution is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amari, S., Nagaoka, H.: Methods of information geometry. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  2. Bauer, M., Bruveris, M., Michor, P.W.: Uniqueness of the Fisher-Rao metric on the space of smooth densities. Bull. Lond. Math. Soc. 48(3), 499–506 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauer, M., Joshi, S., Modin, K.: Diffeomorphic density matching by optimal information transport. SIAM J. Imaging Sci. 8(3), 1718–1751 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  4. Friedrich, T.: Die Fisher-information und symplektische strukturen. Math. Nachr. 153(1), 273–296 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Khesin, B., Lenells, J., Misiołek, G., Preston, S.C.: Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal. 23(1), 334–366 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Khesin, B., Wendt, R.: The Geometry of Infinite-dimensional Groups. A Series of Modern Surveys in Mathematics, vol. 51. Springer, Berlin (2009)

    MATH  Google Scholar 

  9. Marzouk, Y., Moselhy, T., Parno, M., Spantini, A.: Sampling via measure transport: An introduction. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification, pp. 1–14. Springer International Publishing, Cham (2016). doi:10.1007/978-3-319-11259-6_23-1

    Google Scholar 

  10. Miller, M.I., Trouvé, A., Younes, L.: On the metrics and euler-lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4, 375–405 (2002)

    Article  Google Scholar 

  11. Modin, K.: Generalized Hunter-Saxton equations, optimal information transport, and factorization of diffeomorphisms. J. Geom. Anal. 25(2), 1306–1334 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Moselhy, T.A.E., Marzouk, Y.M.: Bayesian inference with optimal maps. J. Comput. Phys. 231(23), 7815–7850 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Diff. Eqn. 26(1–2), 101–174 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Reich, S.: A nonparametric ensemble transform method for Bayesian inference. SIAM J. Sci. Comput. 35(4), A2013–A2024 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Villani, C.: Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klas Modin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bauer, M., Joshi, S., Modin, K. (2017). Diffeomorphic Random Sampling Using Optimal Information Transport. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics