[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deep MR to CT Synthesis Using Unpaired Data

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2017)

Abstract

MR-only radiotherapy treatment planning requires accurate MR-to-CT synthesis. Current deep learning methods for MR-to-CT synthesis depend on pairwise aligned MR and CT training images of the same patient. However, misalignment between paired images could lead to errors in synthesized CT images. To overcome this, we propose to train a generative adversarial network (GAN) with unpaired MR and CT images. A GAN consisting of two synthesis convolutional neural networks (CNNs) and two discriminator CNNs was trained with cycle consistency to transform 2D brain MR image slices into 2D brain CT image slices and vice versa. Brain MR and CT images of 24 patients were analyzed. A quantitative evaluation showed that the model was able to synthesize CT images that closely approximate reference CT images, and was able to outperform a GAN model trained with paired MR and CT images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

References

  1. Bahrami, K., Shi, F., Rekik, I., Shen, D.: Convolutional neural network for reconstruction of 7T-like Images from 3T MRI using appearance and anatomical features. In: Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J.M.R.S., Belagiannis, V., Papa, J.P., Nascimento, J.C., Loog, M., Lu, Z., Cardoso, J.S., Cornebise, J. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 39–47. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_5

    Google Scholar 

  2. Edmund, J.M., Nyholm, T.: A review of substitute CT generation for MRI-only radiation therapy. Radiat. Oncol. 12(1), 28 (2017). doi:10.1186/s13014-016-0747

    Article  Google Scholar 

  3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  4. Han, X.: MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 44(4), 1408–1419 (2017)

    Article  Google Scholar 

  5. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2016). arXiv:1611.07004

  6. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). doi:10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  7. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  8. Nie, D., Cao, X., Gao, Y., Wang, L., Shen, D.: Estimating CT image from MRI data using 3D fully convolutional networks. In: Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J.M.R.S., Belagiannis, V., Papa, J.P., Nascimento, J.C., Loog, M., Lu, Z., Cardoso, J.S., Cornebise, J. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 170–178. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_18

    Google Scholar 

  9. Nie, D., Trullo, R., Petitjean, C., Ruan, S., Shen, D.: Medical image synthesis with context-aware generative adversarial networks. arXiv preprint (2016). arXiv:1612.05362

  10. Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging (2017). http://ieeexplore.ieee.org/document/7934380/

  11. Yi, Z., Zhang, H., Gong, P.T., et al.: Dualgan: unsupervised dual learning for image-to-image translation. arXiv preprint (2017). arXiv:1704.02510

  12. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint (2017). arXiv:1703.10593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelmer M. Wolterink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I. (2017). Deep MR to CT Synthesis Using Unpaired Data. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Computer Science(), vol 10557. Springer, Cham. https://doi.org/10.1007/978-3-319-68127-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68127-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68126-9

  • Online ISBN: 978-3-319-68127-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics