[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Weighted Configuration Logics

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10487))

Included in the following conference series:

Abstract

We introduce and investigate a weighted propositional configuration logic over a commutative semiring. Our logic, which is proved to be sound and complete, is intended to serve as a specification language for software architectures with quantitative features. We extend the weighted configuration logic to its first-order level and succeed in describing architecture styles equipped with quantitative characteristics. We provide interesting examples of weighted architecture styles. Surprisingly, we can construct a formula, in our logic, which describes a classical problem of a different nature than that of software architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since P is finite, the domain of \(\Vert \varphi \Vert \) is finite and in turn its support is also finite.

  2. 2.

    We refer the reader to [11] for the definition of the Abstract Syntax Tree.

  3. 3.

    For simplicity we consider concrete numbers of subscribers and topics. Trivially, one can modify the weighted FOCL formula \(Z_4\) for arbitrarily many subscribers and topics.

References

  1. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01492-5

    MATH  Google Scholar 

  2. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average and long-time behaviors. Inf. Comput. 220–221, 44–59 (2012). doi:10.1016/j.ic.2012.10.001

    Article  MathSciNet  MATH  Google Scholar 

  3. Droste., M., Rahonis, G.: Weighted linear dynamic logic. In: GandALF 2016. EPTCS 226, pp. 149–163 (2016). doi:10.4204/EPTCS.226.11

  4. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of Publish/Subscribe. ACM Comput. Surv. 35(2), 114–131 (2003). doi:10.1145/857076.857078

    Article  Google Scholar 

  5. Garlan, D.: Software architecture: a travelogue. In: FOSE 2014, pp. 29–39, ACM (2014). doi:10.1145/2593882.2593886

  6. Hasan, S., O’Riain, S., Curry, E.: Approximate semantic matching of heterogeneous events. In: DEBS 2012, pp. 252–263, ACM (2012). doi:10.1145/2335484.2335512

  7. Lluch-Lafuente, A., Montanari, U.: Quantitative \(\mu \)-calculus and CTL over constraint semirings. Theoret. Comput. Sci. 346, 135–160 (2005). doi:10.1016/j.entcs.2004.02.063

    Article  MathSciNet  MATH  Google Scholar 

  8. Mandrali, E.: Weighted Computability with Discounting, PhD Thesis. Aristotle University of Thessaloniki, Thessaloniki (2013)

    Google Scholar 

  9. Mandrali, E., Rahonis, G.: On weighted first-order logics with discounting. Acta Inform. 51, 61–106 (2014). doi:10.1007/s00236-013-0193-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Mandrali, E., Rahonis, G.: Weighted first-order logics over semirings. Acta Cybernet. 22, 435–483 (2015). doi:10.14232/actacyb.22.2.2015.13

    Article  MathSciNet  MATH  Google Scholar 

  11. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: modelling architecture styles. J. Logic Algebraic Methods Program. 86, 2–29 (2016). doi:10.1016/j.jlamp.2016.05.002

    Article  MATH  Google Scholar 

  12. Paraponiari, P., Rahonis, G.: On weighted configuration logics. arxiv:1704.04969v4

  13. Pittou, M., Rahonis, G.: Weighted recognizability over infinite alphabets. Acta Cybernet. 23, 283–317 (2017). doi:10.14232/actacyb.23.1.2017.16

    Article  MathSciNet  MATH  Google Scholar 

  14. Sifakis, J.: Rigorous systems design. Found. Trends Sig. Process 6(4), 293–362 (2013). doi:10.1561/1000000034

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We should like to express our gratitude to Joseph Sifakis for useful discussions and to Anastasia Mavridou for clarifications on [11].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Rahonis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Paraponiari, P., Rahonis, G. (2017). On Weighted Configuration Logics. In: Proença, J., Lumpe, M. (eds) Formal Aspects of Component Software. FACS 2017. Lecture Notes in Computer Science(), vol 10487. Springer, Cham. https://doi.org/10.1007/978-3-319-68034-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68034-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68033-0

  • Online ISBN: 978-3-319-68034-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics