[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Segmentation of Human Motion Capture Data Based on Laplasse Eigenmaps

  • Conference paper
  • First Online:
Smart Health (ICSH 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10347))

Included in the following conference series:

Abstract

The segmentation of motion capture data is to separate the different types of human motion data contains long movement sequence into motion clips with independent semantics in order to facilitate the storage in the database as well as medical analysis. This paper proposed a method for human motion capture data segmentation based on Laplacian Eigenmaps (LE) algorithm. Firstly, the LE algorithm is used to reduce the dimension of original data by realizing the mapping from the high dimensional data to the low dimensional space. And then a specified window was drawn in the low dimensional space which was used to calculate the space distance from frames in the specified window to each frame in the former fragment. Finally we detected the similarity to get the final segmentation points, thus obtained motion clips with independent semantics. The validity of the segmentation method is verified by experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbic, J., Safonova, A., Pan, J.Y., et al.: Segmenting motion capture data into distinct behaviors. In: Proceedings of Graphics Interface, pp. 185–194. Canadian Human-Computer Communications Society, Canada (2004)

    Google Scholar 

  2. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Laboatory Syst. 2(1), 37–52 (1987)

    Article  Google Scholar 

  3. Liu, X.P., Lu, J.T., Xia, X.Y.: Motion captured data segmentation based on PCA and mahalanobis distance. J. Hefei Univ. Technol. (Natural Science) 37(5), 563–566 (2014)

    Google Scholar 

  4. Xiao, J., Zhuang, Y.T., Wu, F.: Getting distinct movements from motion capture data. In: 19th Proceeding of the International Conference on Computer Animation and Social Agents, pp. 33–42 (2006)

    Google Scholar 

  5. Tenenbaum, J.B., De, S.V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. J. Sci. 290(5500), 2319 (2000)

    Article  Google Scholar 

  6. Peng, S.J.: Motion segmentation using central distance features and low-pass filter. In: International Conference on Computational Intelligence and Security, pp. 223–226 (2010)

    Google Scholar 

  7. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Annal. Math. Stat. 37(6), 1554–1563 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3(1), 72–83 (1995)

    Article  Google Scholar 

  9. Lin, F.S., Kulić, D.: Online segmentation of human motion for automated rehabilitation exercise analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 168 (2014). A Publication of the IEEE Engineering in Medicine & Biology Society

    Google Scholar 

  10. Lu, C.M., Ferrier, N.J.: Repetitive motion analysis: segmentation and event classification. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 258–263 (2004)

    Article  Google Scholar 

  11. Wang, M.J., Wang, W., Li, Y., et al.: Motion capture data segmentation using kernel dynamic texture. In: International Conference on Audio Language and Image Processing, pp. 592–596. IEEE (2010)

    Google Scholar 

  12. Doretto, G., Chiuso, A., Wu, Y.N., et al.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003)

    Article  MATH  Google Scholar 

  13. Yang, Y., Chen, J.F., Liu, Z.Z., et al.: Low level segmentation of motion capture data based on hierarchical clustering with cosine distance. Int. J. Database Theory Appl. 8(4), 231–240 (2015)

    Article  Google Scholar 

  14. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. In: ACM Siggeraph, pp. 402–408 (2003)

    Google Scholar 

  15. Cortes, C., Vapnik, V.: Support-vector networks. J. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  16. Zhou, F., Torre, F., Hodgins, J.K.: Aligned cluster analysis for temporal segmentation of human motion. In: 8th IEEE International Conference: Automatic Face and Gesture Recognition, pp. 1–7. IEEE (2008)

    Google Scholar 

  17. Mavroeidis, D., Marchiori, E.: Feature selection for k-means clustering stability: theoretical analysis and an algorithm. J. Data Mining Knowl. Discov. 28(4), 918–960 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhou, F., De, l.T.F., Hodgins, J.K.: Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 582–596 (2013)

    Google Scholar 

  19. Yang, Y.D., Wang, L.L., Hao, A.M.: Motion String: a motion capture data representation for behavior segmentation. J. Comput. Res. Dev. 45(3), 527–534 (2008)

    Google Scholar 

  20. Xiao, J.: Feature visualization and interactive segmentation of 3D human motion. J. Softw. 19(8), 1995–2003 (2008)

    Article  Google Scholar 

  21. Hu, X.Y., Sun, B., Zhu, X.M., et al.: Motion capture data segmentation based on spectral clustering. J. Comput.-Aided Des. Comput. Graph. 28(08), 1306–1315 (2016)

    Google Scholar 

  22. Jin, C.B., Cui, R.Y., Jin, X.F.: Improvement of Laplacian eigenmaps for human action recognition. J. Appl. Res. Comput. 31(12), 3613–3616 (2014)

    MathSciNet  Google Scholar 

  23. Liu, H.H., Zhou, C.H.: Semi-supervised Laplacian Eigenmap. J. Comput. Eng. Design. 33(2), 601–605 (2012)

    Google Scholar 

  24. Zhou, M., Liu, B.H.: Classifier design based on Laplacian Eigenmap. J. Comput. Eng. 35(16), 178–180 (2009)

    Google Scholar 

  25. Peng, S.J.: Double-feature combination based approach to motion capture data behavior segmentation. J. Comput. Sci. 40(8), 303–308 (2013)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 61370141, 61300015), the Program for Dalian High-level Talent’s Innovation (2015R088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongsheng Zhou or Qiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xie, X., Liu, R., Zhou, D., Wei, X., Zhang, Q. (2017). Segmentation of Human Motion Capture Data Based on Laplasse Eigenmaps. In: Chen, H., Zeng, D., Karahanna, E., Bardhan, I. (eds) Smart Health. ICSH 2017. Lecture Notes in Computer Science(), vol 10347. Springer, Cham. https://doi.org/10.1007/978-3-319-67964-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67964-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67963-1

  • Online ISBN: 978-3-319-67964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics