[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Music Generation with Relation Join

  • Conference paper
  • First Online:
Bridging People and Sound (CMMR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10525))

Included in the following conference series:

  • 918 Accesses

Abstract

Given a data set taken over a population, the question of how can we construct possible explanatory models for the interactions and dependencies in the population is a discovery question. Projection and Relation Join is a way of addressing this question in a non-deterministic context with mathematical relations. In this paper, we apply projection and relation join to music harmonic sequences to generate new sequences in a given composer or genre style. Instead of first learning the patterns, and then making replications as early music generation work did, we introduce a completely new data driven methodology to generate music. Then we discuss exploring the difference between the original music and synthetic music sequences using information theory based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Music 21 is a toolkit for computer-aided musicology. See http://web.mit.edu/music21/.

References

  1. Al-Rifaie, A.M., Al-Rifaie, M.M.: Generative music with stochastic diffusion search. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 1–14. Springer, Cham (2015). doi:10.1007/978-3-319-16498-4_1

    Google Scholar 

  2. Cahill, N.D.: Normalized measures of mutual information with general definitions of entropy for multimodal image registration. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 258–268. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14366-3_23

    Chapter  Google Scholar 

  3. Chai, W., Vercoe, B.: Folk music classification using hidden Markov models. In: Proceedings of International Conference on Artificial Intelligence, vol. 6. Citeseer (2001)

    Google Scholar 

  4. Cope, D.: Computer modeling of musical intelligence in EMI. Comput. Music J. 16(2), 69–83 (1992)

    Article  Google Scholar 

  5. Ebcioglu, K.: An expert system for harmonization of chorales in the style of J.S. Bach. Ph.D. thesis, Buffalo, NY, USA (1986)

    Google Scholar 

  6. Haralick, R.M., Liu, L., Misshula, E.: Relation decomposition: the theory. In: Perner, P. (ed.) MLDM 2013. LNCS, vol. 7988, pp. 311–324. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39712-7_24

    Chapter  Google Scholar 

  7. Horibe, Y.: Entropy and correlation. IEEE Trans. Syst. Man Cybern. 5, 641–642 (1985)

    Article  MATH  Google Scholar 

  8. Mackworth, A.K.: Constraint satisfaction problems. In: Encyclopedia of AI, pp. 285–293 (1992)

    Google Scholar 

  9. Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution, pp. 381–415. Springer, Heidelberg (2008). doi:10.1007/978-3-540-72877-1_18

    Chapter  Google Scholar 

  10. Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., Romero, J.: A corpus-based hybrid approach to music analysis and composition. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, no. 1, p. 839. AAAI Press/MIT Press, Menlo Park/Cambridge/London 1999 (2007)

    Google Scholar 

  11. Meila, M.: Comparing clusterings an information based distance. J. Multivar. Anal. 98(5), 873–895 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Papadopoulos, G., Wiggins, G.: AI methods for algorithmic composition: a survey, a critical view and future prospects. In: AISB Symposium on Musical Creativity, Edinburgh, UK, pp. 110–117 (1999)

    Google Scholar 

  13. Romero, J., Machado, P., Santos, A., Cardoso, A.: On the development of critics in evolutionary computation artists. In: Cagnoni, S. (ed.) EvoWorkshops 2003. LNCS, vol. 2611, pp. 559–569. Springer, Heidelberg (2003). doi:10.1007/3-540-36605-9_51

    Chapter  Google Scholar 

  14. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996)

    Article  MATH  Google Scholar 

  15. Schulze, W., Van der Merwe, B.: Music generation with Markov models. IEEE Multimed. 3, 78–85 (2010)

    Google Scholar 

  16. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948). Math. Rev. (MathSciNet): MR10, 133e

    Google Scholar 

  17. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11(Oct), 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Wikipedia.org/wiki/Mutual_information

  19. Vitanyi, P.M., et al.: Normalized information distance. In: Emmert-Streib, F., Dehmer, M. (eds.) Information Theory and Statistical Learning, pp. 45–82. Springer, Boston (2009). doi:10.1007/978-0-387-84816-7_3

    Chapter  Google Scholar 

  20. Winograd, T.: Language As a Cognitive Process: Syntax, vol. 1 (1983)

    Google Scholar 

  21. Xu, Z.: Distance, similarity, correlation, entropy measures and clustering algorithms for hesitant fuzzy information. Hesitant Fuzzy Sets Theory. SFSC, vol. 314, pp. 165–279. Springer, Cham (2014). doi:10.1007/978-3-319-04711-9_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Haralick .

Editor information

Editors and Affiliations

Appendices

Appendix A.1: Proofs of Distance Metrics

The proofs show that the four distance metrics we use in this paper satisfies the conditions:

  1. (A)

    Identity. \(d(X, Y) = 0\) if and only if \(X = Y\)

  2. (B)

    Symmetry. \(d(X, Y) = d(Y, X)\)

  3. (C)

    Triangle inequality. \( d(X, Z) + d(Z, Y) \ge d(X, Y) \)

Proof

(A) and (B) are straightforward for all the four metrics give the properties of the entropy and mutual information. To prove the triangle inequality (C), we can first assume \(H(X) \ge H(Y)\). Since d(XY) is symmetric, the reverse case can be proved easily if we can prove one of the two cases (\(H(X) \ge H(Y)\) or \(H(Y) \ge H(X)\)).

So we have only three cases left to consider: \(H(X) \ge H(Y) \ge H(Z)\), \(H(X) \ge H(Z) \ge H(Y)\), and \(H(Z) \ge H(X) \ge H(Y)\).

  • Case \(H(X) \ge H(Y) \ge H(Z)\):

    • For \(d_1 (X, Y)\), first, we know that

      $$\begin{aligned} \begin{aligned}d(X,Y)_1&=H(X,Y)-I(X;Y)\\&=H(X)+H(Y)-2I(X;Y)\\ {}&=H(X|Y)+H(Y|X). \end{aligned} \end{aligned}$$

      then

      $$\begin{aligned} \begin{aligned} H(X|Z)+H(Z|Y)&\ge H(X|Y,Z) +H(Z|Y) = H(X, Z|Y) \ge H(X|Y), \\ \end{aligned} \end{aligned}$$

      so

      $$\begin{aligned} \begin{aligned}d_1(X,Z) + d_1(Z, Y)&=H(X|Z)+H(Z|X) + H(Y|Z)+H(Z|Y)\\&\ge H(X|Y) + H(Z|X) + H(Y|Z) \\&\ge H(X|Y) + H(Y|X) = d_1(X, Y). \end{aligned} \end{aligned}$$
    • For \(d'_1 (X, Y) = 1 - \frac{I(X;Y)}{max \{H(X), H(Y) \}}\),

      $$\begin{aligned} \begin{aligned} d'_1 (X, Y)&= 1 - \frac{I(X;Y)}{max \{H(X), H(Y) \}}\\&= 1 + \frac{H(X, Y) - H(X) - H(Y)}{max \{H(X), H(Y) \}}. \\&= 1 + \frac{H(X, Y) - H(X) - H(Y)}{ H(X)}. \\&= \frac{H(X, Y) - H(Y)}{ H(X)} = \frac{H(X|Y)}{H(X)}. \\ \end{aligned} \end{aligned}$$
      $$\begin{aligned} \begin{aligned} d'_1 (X, Z) + d'_1 (Z, Y)&= 1 + \frac{H(X, Z) - H(X) - H(Z)}{max \{H(X), H(Z) \}} + 1 + \frac{H(Z, Y) - H(Z) - H(Y)}{max \{H(Z), H(Y) \}}\\&= 1 + \frac{H(X, Z) - H(X) - H(Z)}{H(X)} + 1 + \frac{H(Z, Y) - H(Z) - H(Y)}{H(Y)} \\&\ge 1 + \frac{H(X, Z) - H(X) - H(Z)}{H(X)} + 1 + \frac{H(Z, Y) - H(Z) - H(Y)}{H(X)} \\&\ge 1 + \frac{H(X| Z) - H(X)}{H(X)} + 1 + \frac{H(Z| Y) - H(Z)}{H(X)} \\&\ge 1 + 1 +\frac{H(X| Y) - H(X)- H(Z)}{H(X)} \\&\ge 1 + 1 +\frac{H(X| Y) - H(X)- H(X)}{H(X)} \\&\ge 1 +\frac{H(X| Y) - H(X)}{H(X)} = \frac{H(X|Y)}{H(X)}= d'_1(X, Y). \end{aligned} \end{aligned}$$
    • For \(d_2(X, Y)\), we first have \(I(X; Y) = H(X) - H(X |Y) = H(Y) - H(Y|X)\), which means \(H(X|Y) -H(Y|X) = H(X)-H(Y)>0\), so

      $$\begin{aligned} \begin{aligned} d_2(X, Z) + d_2(Z, Y)&= H(X, Z) - min \{H(X), H(Z) \} + H(Z, Y) - min \{H(Z), H(Y) \} \\&= H(X, Z) - H(Z) + H(Z, Y) - H(Z) \\&= H(X | Z) + H(Y | Z) \\&\ge H(X | Z) + H(Z | Y) \\&\ge H(X|Y) \\&= H(X, Y) - H(Y) \\&= H(X, Y) - min \{H(X), H(Y) = d_2(X, Y). \end{aligned} \end{aligned}$$
    • For \(d_3(X, Y)\),

      $$\begin{aligned} \begin{aligned} d_3 (X, Z) + d_3 (Z, Y)&= \frac{H(X, Z) - min \{H(X), H(Z) \}}{max \{H(X), H(Z) \}} + \frac{H(Z, Y) - min \{H(Z), H(Y) \}}{max \{H(Z), H(Y) \}}\\&= \frac{H(X, Z) - H(Z)}{H(X)} + \frac{H(Z, Y) - H(Z)}{H(Y)} \\&= \frac{H(X|Z)}{H(X)} + \frac{H(Y|Z)}{H(Y)} \\&\ge \frac{H(X|Z)}{H(X)} + \frac{H(Z|Y)}{H(Y)} \\&\ge \frac{H(X|Z)}{H(X)} + \frac{H(Z|Y)}{H(X)} \\&\ge \frac{H(X|Y)}{H(X)} = d_3(X, Y). \end{aligned} \end{aligned}$$
  • Case \(H(X) \ge H(Z) \ge H(Y)\): Similarly to the case \(H(X) \ge H(Y) \ge H(Z)\).

  • Case \(H(Z) \ge H(X) \ge H(Y)\): Similarly to the case \(H(X) \ge H(Y) \ge H(Z)\).

   \(\square \)

Appendix A.2: Harmonic Sequences in Scale C with 80 in Quarterlength Time Duration

(See Figs. 11 and 12).

Fig. 11.
figure 11

Synthetic harmonic sequence based on Bach Chorales with the scales fixed at C sample 1

Fig. 12.
figure 12

Synthetic harmonic sequence based on Bach Chorales with the scales fixed at C sample 2

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ni, X., Liu, L., Haralick, R. (2017). Music Generation with Relation Join. In: Aramaki, M., Kronland-Martinet, R., Ystad, S. (eds) Bridging People and Sound. CMMR 2016. Lecture Notes in Computer Science(), vol 10525. Springer, Cham. https://doi.org/10.1007/978-3-319-67738-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67738-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67737-8

  • Online ISBN: 978-3-319-67738-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics