Abstract
Given a data set taken over a population, the question of how can we construct possible explanatory models for the interactions and dependencies in the population is a discovery question. Projection and Relation Join is a way of addressing this question in a non-deterministic context with mathematical relations. In this paper, we apply projection and relation join to music harmonic sequences to generate new sequences in a given composer or genre style. Instead of first learning the patterns, and then making replications as early music generation work did, we introduce a completely new data driven methodology to generate music. Then we discuss exploring the difference between the original music and synthetic music sequences using information theory based techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Music 21 is a toolkit for computer-aided musicology. See http://web.mit.edu/music21/.
References
Al-Rifaie, A.M., Al-Rifaie, M.M.: Generative music with stochastic diffusion search. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 1–14. Springer, Cham (2015). doi:10.1007/978-3-319-16498-4_1
Cahill, N.D.: Normalized measures of mutual information with general definitions of entropy for multimodal image registration. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 258–268. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14366-3_23
Chai, W., Vercoe, B.: Folk music classification using hidden Markov models. In: Proceedings of International Conference on Artificial Intelligence, vol. 6. Citeseer (2001)
Cope, D.: Computer modeling of musical intelligence in EMI. Comput. Music J. 16(2), 69–83 (1992)
Ebcioglu, K.: An expert system for harmonization of chorales in the style of J.S. Bach. Ph.D. thesis, Buffalo, NY, USA (1986)
Haralick, R.M., Liu, L., Misshula, E.: Relation decomposition: the theory. In: Perner, P. (ed.) MLDM 2013. LNCS, vol. 7988, pp. 311–324. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39712-7_24
Horibe, Y.: Entropy and correlation. IEEE Trans. Syst. Man Cybern. 5, 641–642 (1985)
Mackworth, A.K.: Constraint satisfaction problems. In: Encyclopedia of AI, pp. 285–293 (1992)
Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution, pp. 381–415. Springer, Heidelberg (2008). doi:10.1007/978-3-540-72877-1_18
Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., Romero, J.: A corpus-based hybrid approach to music analysis and composition. In: Proceedings of the National Conference on Artificial Intelligence, vol. 22, no. 1, p. 839. AAAI Press/MIT Press, Menlo Park/Cambridge/London 1999 (2007)
Meila, M.: Comparing clusterings an information based distance. J. Multivar. Anal. 98(5), 873–895 (2007)
Papadopoulos, G., Wiggins, G.: AI methods for algorithmic composition: a survey, a critical view and future prospects. In: AISB Symposium on Musical Creativity, Edinburgh, UK, pp. 110–117 (1999)
Romero, J., Machado, P., Santos, A., Cardoso, A.: On the development of critics in evolutionary computation artists. In: Cagnoni, S. (ed.) EvoWorkshops 2003. LNCS, vol. 2611, pp. 559–569. Springer, Heidelberg (2003). doi:10.1007/3-540-36605-9_51
Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn. 25(2–3), 117–149 (1996)
Schulze, W., Van der Merwe, B.: Music generation with Markov models. IEEE Multimed. 3, 78–85 (2010)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948). Math. Rev. (MathSciNet): MR10, 133e
Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11(Oct), 2837–2854 (2010)
Vitanyi, P.M., et al.: Normalized information distance. In: Emmert-Streib, F., Dehmer, M. (eds.) Information Theory and Statistical Learning, pp. 45–82. Springer, Boston (2009). doi:10.1007/978-0-387-84816-7_3
Winograd, T.: Language As a Cognitive Process: Syntax, vol. 1 (1983)
Xu, Z.: Distance, similarity, correlation, entropy measures and clustering algorithms for hesitant fuzzy information. Hesitant Fuzzy Sets Theory. SFSC, vol. 314, pp. 165–279. Springer, Cham (2014). doi:10.1007/978-3-319-04711-9_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix A.1: Proofs of Distance Metrics
The proofs show that the four distance metrics we use in this paper satisfies the conditions:
-
(A)
Identity. \(d(X, Y) = 0\) if and only if \(X = Y\)
-
(B)
Symmetry. \(d(X, Y) = d(Y, X)\)
-
(C)
Triangle inequality. \( d(X, Z) + d(Z, Y) \ge d(X, Y) \)
Proof
(A) and (B) are straightforward for all the four metrics give the properties of the entropy and mutual information. To prove the triangle inequality (C), we can first assume \(H(X) \ge H(Y)\). Since d(X, Y) is symmetric, the reverse case can be proved easily if we can prove one of the two cases (\(H(X) \ge H(Y)\) or \(H(Y) \ge H(X)\)).
So we have only three cases left to consider: \(H(X) \ge H(Y) \ge H(Z)\), \(H(X) \ge H(Z) \ge H(Y)\), and \(H(Z) \ge H(X) \ge H(Y)\).
-
Case \(H(X) \ge H(Y) \ge H(Z)\):
-
For \(d_1 (X, Y)\), first, we know that
$$\begin{aligned} \begin{aligned}d(X,Y)_1&=H(X,Y)-I(X;Y)\\&=H(X)+H(Y)-2I(X;Y)\\ {}&=H(X|Y)+H(Y|X). \end{aligned} \end{aligned}$$then
$$\begin{aligned} \begin{aligned} H(X|Z)+H(Z|Y)&\ge H(X|Y,Z) +H(Z|Y) = H(X, Z|Y) \ge H(X|Y), \\ \end{aligned} \end{aligned}$$so
$$\begin{aligned} \begin{aligned}d_1(X,Z) + d_1(Z, Y)&=H(X|Z)+H(Z|X) + H(Y|Z)+H(Z|Y)\\&\ge H(X|Y) + H(Z|X) + H(Y|Z) \\&\ge H(X|Y) + H(Y|X) = d_1(X, Y). \end{aligned} \end{aligned}$$ -
For \(d'_1 (X, Y) = 1 - \frac{I(X;Y)}{max \{H(X), H(Y) \}}\),
$$\begin{aligned} \begin{aligned} d'_1 (X, Y)&= 1 - \frac{I(X;Y)}{max \{H(X), H(Y) \}}\\&= 1 + \frac{H(X, Y) - H(X) - H(Y)}{max \{H(X), H(Y) \}}. \\&= 1 + \frac{H(X, Y) - H(X) - H(Y)}{ H(X)}. \\&= \frac{H(X, Y) - H(Y)}{ H(X)} = \frac{H(X|Y)}{H(X)}. \\ \end{aligned} \end{aligned}$$$$\begin{aligned} \begin{aligned} d'_1 (X, Z) + d'_1 (Z, Y)&= 1 + \frac{H(X, Z) - H(X) - H(Z)}{max \{H(X), H(Z) \}} + 1 + \frac{H(Z, Y) - H(Z) - H(Y)}{max \{H(Z), H(Y) \}}\\&= 1 + \frac{H(X, Z) - H(X) - H(Z)}{H(X)} + 1 + \frac{H(Z, Y) - H(Z) - H(Y)}{H(Y)} \\&\ge 1 + \frac{H(X, Z) - H(X) - H(Z)}{H(X)} + 1 + \frac{H(Z, Y) - H(Z) - H(Y)}{H(X)} \\&\ge 1 + \frac{H(X| Z) - H(X)}{H(X)} + 1 + \frac{H(Z| Y) - H(Z)}{H(X)} \\&\ge 1 + 1 +\frac{H(X| Y) - H(X)- H(Z)}{H(X)} \\&\ge 1 + 1 +\frac{H(X| Y) - H(X)- H(X)}{H(X)} \\&\ge 1 +\frac{H(X| Y) - H(X)}{H(X)} = \frac{H(X|Y)}{H(X)}= d'_1(X, Y). \end{aligned} \end{aligned}$$ -
For \(d_2(X, Y)\), we first have \(I(X; Y) = H(X) - H(X |Y) = H(Y) - H(Y|X)\), which means \(H(X|Y) -H(Y|X) = H(X)-H(Y)>0\), so
$$\begin{aligned} \begin{aligned} d_2(X, Z) + d_2(Z, Y)&= H(X, Z) - min \{H(X), H(Z) \} + H(Z, Y) - min \{H(Z), H(Y) \} \\&= H(X, Z) - H(Z) + H(Z, Y) - H(Z) \\&= H(X | Z) + H(Y | Z) \\&\ge H(X | Z) + H(Z | Y) \\&\ge H(X|Y) \\&= H(X, Y) - H(Y) \\&= H(X, Y) - min \{H(X), H(Y) = d_2(X, Y). \end{aligned} \end{aligned}$$ -
For \(d_3(X, Y)\),
$$\begin{aligned} \begin{aligned} d_3 (X, Z) + d_3 (Z, Y)&= \frac{H(X, Z) - min \{H(X), H(Z) \}}{max \{H(X), H(Z) \}} + \frac{H(Z, Y) - min \{H(Z), H(Y) \}}{max \{H(Z), H(Y) \}}\\&= \frac{H(X, Z) - H(Z)}{H(X)} + \frac{H(Z, Y) - H(Z)}{H(Y)} \\&= \frac{H(X|Z)}{H(X)} + \frac{H(Y|Z)}{H(Y)} \\&\ge \frac{H(X|Z)}{H(X)} + \frac{H(Z|Y)}{H(Y)} \\&\ge \frac{H(X|Z)}{H(X)} + \frac{H(Z|Y)}{H(X)} \\&\ge \frac{H(X|Y)}{H(X)} = d_3(X, Y). \end{aligned} \end{aligned}$$
-
-
Case \(H(X) \ge H(Z) \ge H(Y)\): Similarly to the case \(H(X) \ge H(Y) \ge H(Z)\).
-
Case \(H(Z) \ge H(X) \ge H(Y)\): Similarly to the case \(H(X) \ge H(Y) \ge H(Z)\).
\(\square \)
Appendix A.2: Harmonic Sequences in Scale C with 80 in Quarterlength Time Duration
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ni, X., Liu, L., Haralick, R. (2017). Music Generation with Relation Join. In: Aramaki, M., Kronland-Martinet, R., Ystad, S. (eds) Bridging People and Sound. CMMR 2016. Lecture Notes in Computer Science(), vol 10525. Springer, Cham. https://doi.org/10.1007/978-3-319-67738-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-67738-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67737-8
Online ISBN: 978-3-319-67738-5
eBook Packages: Computer ScienceComputer Science (R0)