[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evaluating Active Learning Methods for Bankruptcy Prediction

  • Conference paper
  • First Online:
Brain Function Assessment in Learning (BFAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10512))

Included in the following conference series:

Abstract

The prediction of corporate bankruptcy has been addressed as an increasingly important financial problem and has been extensively analyzed in the accounting literature. Over recent years, several machine learning methods have been effectively applied to build accurate predictive models for detecting business failure with remarkable results, such as neural networks (NNs) and ensemble methods. This paper investigates the effectiveness of the active learning framework to predict bankruptcy using financial data from a set of Greek firms. Active learning is an emerging subfield of machine learning exploiting a small amount of labeled data together with a large pool of unlabeled data to improve learning accuracy. From what we know so far there exists no study dealing with the implementation of active learning methodologies in the financial field. Several experiments take place in our research comparing the accuracy measures of familiar active learners and demonstrating their efficiency in contrast to representative supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alfaro, E., García, N., Gámez, M., Elizondo, D.: Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems 45(1), 110–122 (2008)

    Article  Google Scholar 

  2. Altman, E.I.: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance 23(4), 589–609 (1968)

    Article  Google Scholar 

  3. Atiya, A.F.: Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Transactions on Neural Networks 12(4), 929–935 (2001)

    Article  Google Scholar 

  4. Beaver, W.H.: Financial ratios as predictors of failure. Journal of Accounting Research, 71–111 (1966)

    Google Scholar 

  5. Barboza, F., Kimura, H., Altman, E.: Machine Learning Models and Bankruptcy Prediction. Expert Systems with Applications (2017)

    Google Scholar 

  6. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Dasgupta, S.: Two faces of active learning. Theoretical Computer Science 412(19), 1767–1781 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deligianni, D., Kotsiantis, S.: Forecasting corporate bankruptcy with an ensemble of classifiers. In: Maglogiannis, I., Plagianakos, V., Vlahavas, I. (eds.) SETN 2012. LNCS, vol. 7297, pp. 65–72. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30448-4_9

    Chapter  Google Scholar 

  9. du Jardin, P.: Dynamics of firm financial evolution and bankruptcy prediction. Expert Systems with Applications 75, 25–43 (2017)

    Google Scholar 

  10. Dwyer, K., Holte, R.: Decision tree instability and active learning. In: Kok, Joost N., Koronacki, J., Mantaras, RLd, Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS, vol. 4701, pp. 128–139. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74958-5_15

    Chapter  Google Scholar 

  11. Fallahpour, S., Lakvan, E.N., Zadeh, M.H.: Using an ensemble classifier based on sequential floating forward selection for financial distress prediction problem. Journal of Retailing and Consumer Services 34, 159–167 (2017)

    Article  Google Scholar 

  12. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmospheric Environment 32(14), 2627–2636 (1998)

    Article  Google Scholar 

  13. Groppelli, A.A., Nikbakht, E.: Barron’s Finance (2000)

    Google Scholar 

  14. Hodges, J.L., Lehmann, E.L.: Rank methods for combination of independent experiments in analysis of variance. The Annals of Mathematical Statistics 33(2), 482–497 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, S.J., Jin, R., Zhou, Z.H.: Active learning by querying informative and representative examples. In: Advances in Neural Information Processing Systems, pp. 892–900 (2010)

    Google Scholar 

  16. Jones, S., Johnstone, D., Wilson, R.: Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance & Accounting 44(1–2), 3–34 (2017)

    Article  Google Scholar 

  17. Karlos, S., Kotsiantis, S., Fazakis, N., Sgarbas, K.: Effectiveness of semi-supervised learning in bankruptcy prediction. In: 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA), pp. 1–6. IEEE (2016)

    Google Scholar 

  18. Kremer, J., Steenstrup Pedersen, K., Igel, C.: Active learning with support vector machines. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4(4), 313–326 (2014)

    Google Scholar 

  19. Leng, Y., Xu, X., Qi, G.: Combining active learning and semi-supervised learning to construct SVM classifier. Knowledge-Based Systems 44, 121–131 (2013)

    Article  Google Scholar 

  20. Ling, C.X., Huang, J., Zhang, H.: AUC: a statistically consistent and more discriminating measure than accuracy. In: IJCAI, vol. 3, pp. 519–524 (2003)

    Google Scholar 

  21. Mamitsuka, N.A.H.: Query learning strategies using boosting and bagging. In: Machine Learning: Proceedings of the Fifteenth International Conference (ICML 1998), vol. 1. Morgan Kaufmann Pub (1998)

    Google Scholar 

  22. Mselmi, N., Lahiani, A., Hamza, T.: Financial distress prediction: The case of French small and medium-sized firms. International Review of Financial Analysis 50, 67–80 (2017)

    Article  Google Scholar 

  23. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Advances in Neural Information Processing Systems 2, 841–848 (2002)

    Google Scholar 

  24. Odom, M.D., Sharda, R.: A neural network model for bankruptcy prediction. In: 1990 IJCNN International Joint Conference on, pp. 163–168. IEEE (1990)

    Google Scholar 

  25. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  26. Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines (1998)

    Google Scholar 

  27. Ramirez-Loaiza, M.E., Sharma, M., Kumar, G., Bilgic, M.: Active learning: an empirical study of common baselines. Data Mining and Knowledge Discovery, pp. 1–27 (2016)

    Google Scholar 

  28. Reyes, O., Pérez, E., del Carmen Rodrıguez-Hernández, M., Fardoun, H.M., Ventura, S.: JCLAL: a Java framework for active learning. Journal of Machine Learning Research 17(95), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Settles, B.: Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 6(1), 1–114 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1070–1079. Association for Computational Linguistics (2008)

    Google Scholar 

  31. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  32. Sharda, R., Wilson, R.L.: Neural network experiments in business-failure forecasting: Predictive performance measurement issues. International Journal of Computational Intelligence and Organizations 1(2), 107–117 (1996)

    Google Scholar 

  33. Sharma, M., Bilgic, M.: Evidence-based uncertainty sampling for active learning. Data Mining and Knowledge Discovery 31(1), 164–202 (2017)

    Article  MathSciNet  Google Scholar 

  34. Tam, K.Y., Kiang, M.Y.: Managerial applications of neural networks: the case of bank failure predictions. Management Science 38(7), 926–947 (1992)

    Article  MATH  Google Scholar 

  35. Triguero, I., García, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowledge and Information Systems 42(2), 245–284 (2015)

    Article  Google Scholar 

  36. Wang, J., Park, E.: Active learning for penalized logistic regression via sequential experimental design. Neurocomputing 222, 183–190 (2017)

    Article  Google Scholar 

  37. Wilson, R.L., Sharda, R.: Bankruptcy prediction using neural networks. Decision Support Systems 11(5), 545–557 (1994)

    Article  Google Scholar 

  38. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2016)

    Google Scholar 

  39. Zhou, Z.-H.: Learning with unlabeled data and its application to image retrieval. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS, vol. 4099, pp. 5–10. Springer, Heidelberg (2006). doi:10.1007/978-3-540-36668-3_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Kostopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kostopoulos, G., Karlos, S., Kotsiantis, S., Tampakas, V. (2017). Evaluating Active Learning Methods for Bankruptcy Prediction. In: Frasson, C., Kostopoulos, G. (eds) Brain Function Assessment in Learning. BFAL 2017. Lecture Notes in Computer Science(), vol 10512. Springer, Cham. https://doi.org/10.1007/978-3-319-67615-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67615-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67614-2

  • Online ISBN: 978-3-319-67615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics