[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Segmentation of Retinal Blood Vessels Using Dictionary Learning Techniques

  • Conference paper
  • First Online:
Fetal, Infant and Ophthalmic Medical Image Analysis (OMIA 2017, FIFI 2017)

Abstract

In this paper, we aim at proving the effectiveness of dictionary learning techniques on the task of retinal blood vessel segmentation. We present three different methods based on dictionary learning and sparse coding that reach state-of-the-art results. Our methods are tested on two, well-known, publicly available datasets: DRIVE and STARE. The methods are compared to many state-of-the-art approaches and turn out to be very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The \(\ell _q\)-norm (\(q \ge 1\)) of a vector \(\mathbf {x}\) is: \(\Vert \mathbf {x}\Vert _q = [ \sum _i \mid x[i]\mid ^q ]^{1/q}\).

  2. 2.

    The Frobenius-norm of a matrix \(\mathbf {A} \in \mathbb {R}^{m\times n}\) is: \(\Vert \mathbf {A}\Vert _F = \big [\sum _{i=1}^{m} \sum _{j=1}^{n} A[i,j]^2\big ]^{1/2}\).

  3. 3.

    http://spams-devel.gforge.inria.fr/.

References

  1. Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C., Barman, S.: Blood vessel segmentation methodologies in retinal images - a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  2. Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E.Y.K., Laude, A.: Computer-aided diagnosis of diabetic retinopathy: a review. Comp. Bio. and Med. 43(12), 2136–2155 (2013)

    Article  Google Scholar 

  3. Vega, R., Sánchez-Ante, G., Falcón-Morales, L., Sossa, H., Guevara, E.: Retinal vessel extraction using lattice neural networks with dendritic processing. Comp. Bio. and Med. 58, 20–30 (2015)

    Article  Google Scholar 

  4. Javidi, M., Pourreza, H.R., Harati, A.: Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation. Comput. Methods Programs Biomed. 139, 93–108 (2017)

    Article  Google Scholar 

  5. Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., Yang, G.: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149, 708–717 (2015)

    Article  Google Scholar 

  6. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  7. Mairal, J., Bach, F., Ponce, J.: Sparse modeling for image and vision processing. Found. Trends Comput. Graph. Vision 8(2–3), 85–283 (2014)

    Article  MATH  Google Scholar 

  8. Elad, M.: Sparse and Redundant Representation. Springer, New York, Dordrecht, Heidelberg, London (2010)

    Book  MATH  Google Scholar 

  9. Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2691–2698 (2010)

    Google Scholar 

  10. Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Feature selection in face recognition: a sparse representation perspective. Technical Report UCB/EECS-2007-99, EECS Department, University of California, Berkeley (2007)

    Google Scholar 

  11. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Mathe. Imaging Vision 20(1–2), 99–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Staal, J., Abrmoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.V.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  13. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19, 203–210 (2000)

    Article  Google Scholar 

  14. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Mathe. Imaging Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Singh, N.P., Srivastava, R.: Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput. Methods Programs Biomed. 129, 40–50 (2016)

    Article  Google Scholar 

  17. Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2017)

    Article  Google Scholar 

  18. Dasgupta, A., Singh, S.: A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 248–251 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taibou Birgui Sekou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Birgui Sekou, T., Hidane, M., Olivier, J., Cardot, H. (2017). Segmentation of Retinal Blood Vessels Using Dictionary Learning Techniques. In: Cardoso, M., et al. Fetal, Infant and Ophthalmic Medical Image Analysis. OMIA FIFI 2017 2017. Lecture Notes in Computer Science(), vol 10554. Springer, Cham. https://doi.org/10.1007/978-3-319-67561-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67561-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67560-2

  • Online ISBN: 978-3-319-67561-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics