[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MRI-Based Heart and Torso Personalization for Computer Modeling and Simulation of Cardiac Electrophysiology

  • Conference paper
  • First Online:
Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound (BIVPCS 2017, POCUS 2017)

Abstract

In the last decade, electrophysiological models for in-silico simulations of cardiac electrophysiology have gained much attention in the research field. However, to translate them to clinical uses, the models need personalization based on recordings from the patient. In this work, we explore methodologies for the patient-specific personalization of torso and heart geometric models based on standard clinical cardiac magnetic resonance acquisitions to enable simulations. The inclusion of the torso and its internal structures allows simulations of the human ventricular electrophysiological activity from the ionic level to the body surface potentials and to the electrocardiogram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://humanshape.mpi-inf.mpg.de/.

  2. 2.

    http://github.com/dengwirda/jigsaw.

  3. 3.

    http://wias-berlin.de/software/tetgen/.

  4. 4.

    http://www.cs.ox.ac.uk/chaste/.

References

  1. Arevalo, H., et al.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nature Commun. 7, 11437 (2016)

    Article  Google Scholar 

  2. Zettinig, O., et al.: From medical images to fast computational models of heart electromechanics: an integrated framework towards clinical use. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 249–258. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38899-6_30

    Chapter  Google Scholar 

  3. Peng, P., et al.: A review of heart chamber segmentation for structural and functional analysis using cardiac MRI. Magn. Reson. Mater. Phys. 29(2), 155–195 (2016)

    Article  MathSciNet  Google Scholar 

  4. Heiberg, E., et al.: Design and validation of segment - freely available software for cardiovascular image analysis. BMC Med. Imaging 10(1), 1 (2010)

    Article  Google Scholar 

  5. Schulz-Menger, J., et al.: Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J. Cardiovasc. Magn. Reson. 15(1), 35 (2013)

    Article  Google Scholar 

  6. Prakash, R.: Determination of right ventricular wall thickness in systole and diastole. Echocardiographic and necropsy correlation in 32 patients. Heart 40(11), 1257–1261 (1978)

    Article  Google Scholar 

  7. Villard, B., Zacur, E., Dall’Armellina, E., Grau, V.: Correction of slice misalignment in multi-breath-hold cardiac MRI scans. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2016. LNCS, vol. 10124, pp. 30–38. Springer, Cham (2017). doi:10.1007/978-3-319-52718-5_4

    Chapter  Google Scholar 

  8. Villard, B., et al.: Cardiac mesh reconstruction from sparse, heterogeneous contours. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 169–181. Springer, Cham (2017)

    Google Scholar 

  9. Zhu, S., et al.: An efficient human model customization method based on orthogonal view monocular photos. Comput. Aided Des. 45(11), 1314–1332 (2013)

    Article  Google Scholar 

  10. Zettinig, O., et al.: Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals. Med. Image Anal. 18(8), 1361–1376 (2014)

    Article  Google Scholar 

  11. Gillette, K., et al.: Generation of combined-modality tetrahedral meshes. In: Proceedings CinC 2015 (2015)

    Google Scholar 

  12. Trayanova, N., et al.: How computer simulations of the human heart can improve anti-arrhythmia therapy. J. Physiol. 594(9), 2483–2502 (2016)

    Article  Google Scholar 

  13. Pishchulin, L., et al.: Building statistical shape spaces for 3D human modeling. Pattern Recogn. 67, 276–286 (2017)

    Article  Google Scholar 

  14. Rohr, K., et al.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans. Med. Imaging 20(6), 526–534 (2001)

    Article  Google Scholar 

  15. Amberg, B., et al.: Optimal step nonrigid ICP algorithms for surface registration. In: Proceedings IEEE CVPR 2007 (2007)

    Google Scholar 

  16. Geneser, S., et al.: Application of stochastic FEM to study the sensitivity of ECG forward modeling to organ conductivity. IEEE Trans. Biomed. Eng. 55(1), 31–40 (2008)

    Article  Google Scholar 

  17. Keller, D., et al.: Ranking the influence of tissue conductivities on forward-calculated ECGs. IEEE Trans. Biomed. Eng. 57(7), 1568–1576 (2010)

    Article  Google Scholar 

  18. Bernabeu, M., et al.: Shock-induced arrhythmogenesis in the human heart: a computational modelling study. In: Proceedings IEEE EMBS 2010 (2010)

    Google Scholar 

  19. Engwirda, D.: Locally-optimal Delaunay-refinement and optimisation-based mesh generation. Ph.D. thesis, The University of Sydney (2014)

    Google Scholar 

  20. Hang, S.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015)

    Google Scholar 

  21. Pitt-Francis, J., et al.: Chaste: a test-driven approach to software development for biological modelling. Comput. Phys. Commun. 180(12), 2452–2471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cardone-Noott, L., et al.: Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions. EP Europace 18(suppl. 4), iv4–iv15 (2016)

    Google Scholar 

  23. Streeter, D.: Gross Morphology and Fiber Geometry of the Heart. Johns Hopkins Press, Baltimore (1979)

    Google Scholar 

Download references

Acknowledgments

EZ acknowledges the Marie Sklodowska-Curie Individual Fellowship from the H2020 EU Framework Programme for Research and Innovation (Proposal No: 655020-DTI4micro-MSCA-IF-EF-ST). AM and BR are supported by BR’s Wellcome Trust Senior Research Fellowship in Basic Biomedical Sciences, the CompBiomed project (grant agreement No 675451) and the NC3R Infrastructure for Impact award (NC/P001076/1). BV acknowledges the support of the RCUK Digital Economy Programme grant number EP/G036861/1 (Oxford Centre for Doctoral Training in Healthcare Innovation). VC was supported by ERACoSysMed through a grant to the project SysAFib - Systems medicine for diagnosis and stratification of atrial fibrillation. RA is supported by a British Heart Foundation Clinical Research Training Fellowship. VG is supported by a BBSRC grant (BB/I012117/1), an EPSRC grant (EP/J013250/1), by BHF New Horizon Grant NH/13/30238 and by the CompBiomed project (grant agreement No 675451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Zacur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zacur, E. et al. (2017). MRI-Based Heart and Torso Personalization for Computer Modeling and Simulation of Cardiac Electrophysiology. In: Cardoso, M., et al. Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound. BIVPCS POCUS 2017 2017. Lecture Notes in Computer Science(), vol 10549. Springer, Cham. https://doi.org/10.1007/978-3-319-67552-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67552-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67551-0

  • Online ISBN: 978-3-319-67552-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics