[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Pan-Integrals Based on Optimal Measures

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10571))

Abstract

The pan-integrals are based on a special type of commutative isotonic semiring \((\overline{R}_+, \oplus , \otimes )\) and the monotone measures \(\mu \) defined on a measurable space \((X,\mathcal {A})\). On the other hand, based on a pan-addition \(\oplus \) each monotone measure \(\mu \) generates a new monotone measure \(\mu _{\oplus }\) which is called the \(\oplus \)-optimal measure (to \(\mu \) and \(\oplus \)). Such monotone measure \(\mu _{\oplus }\) is greater than or equal to \(\mu \) and it is super-\(\oplus \)-additive (i.e., \(\mu _{\oplus }(A\cup B) \ge \mu _{\oplus }(A)\oplus \mu _{\oplus }(B)\) whenever \(A,B\in \mathcal {A}\), \(A\cap B=\emptyset \)). In this note, we shall present some new properties of the pan-integral. It is shown that the pan-integral with respect to \(\mu \) coincides with the pan-integral with respect to \(\mu _{\oplus }\) on a given pan-space \((X,\mathcal {A},\mu ,\overline{R}_+,\oplus ,\otimes )\). As a special case of this result, we show that the \(\oplus \)-optimal measure derived from \(\mu \) is totally balanced for the pan-integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap, E. (ed.) Handbook of Measure Theory, vol. II, pp. 1329–1379. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  2. Benvenuti, P., Mesiar, R.: Pseudo-arithmetical operations as a basis for the general measure and integration theory. Inf. Sci. 160, 1–11 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals: Theory and Applications. Studies in Fuzziness and Soft Computing, vol. 40. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  5. Ichihashi, H., Tanaka, M., Asai, K.: Fuzzy integrals based on pseudo-additions and multiplications. J. Math. Anal. Appl. 130, 354–364 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Klement, E.P., Li, J., Mesiar, R., Pap, E.: Integrals based on monotone set functions. Fuzzy Sets Syst. 281, 88–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)

    Article  Google Scholar 

  8. Lehrer, E.: A new integral for capacities. Econ. Theor. 39, 157–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lehrer, E., Teper, R.: The concave integral over large spaces. Fuzzy Sets Syst. 159, 2130–2144 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, J., Mesiar, R., Struk, P.: Pseudo-optimal measures. Inf. Sci. 180, 4015–4021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mesiar, R., Li, J., Pap, E.: Pseudo-concave integrals. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds.) NLMUA2011. Advances in Intelligent and Soft Computing, vol. 100, pp. 43–49. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reason. 54, 357–364 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mesiar, R., Rybárik, J.: Pan-operaions structure. Fuzzy Sets Syst. 74, 365–369 (1995)

    Article  MATH  Google Scholar 

  15. Mesiar, R., Stupnaňová, A.: Decomposition integrals. Int. J. Approx. Reason. 54, 1252–1259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ouyang, Y., Li, J.: An equivalent definition of pan-integral. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS, vol. 9880, pp. 107–113. Springer, Cham (2016). doi:10.1007/978-3-319-45656-0_9

    Chapter  Google Scholar 

  17. Pap, E.: Null-Additive Set Functions. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  18. Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Dissertation, Takyo Institute of Technology (1974)

    Google Scholar 

  20. Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, New York (2009)

    Book  MATH  Google Scholar 

  22. Wang, Z., Wang, W., Klir, G.J.: Pan-integrals with respect to imprecise probabilities. Int. J. Gen Syst 25, 229–243 (1996)

    Article  MATH  Google Scholar 

  23. Yang, Q.: The pan-integral on fuzzy measure space. Fuzzy Math. 3, 107–114 (1985). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, Q., Mesiar, R., Li, J., Struk, P.: Generalized Lebesgue integral. Int. J. Approx. Reason. 52, 427–443 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (Grant No. 11371332 and No. 11571106) and the NSF of Zhejiang Province (No. LY15A010013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, J., Ouyang, Y., Yu, M. (2017). Pan-Integrals Based on Optimal Measures. In: Torra, V., Narukawa, Y., Honda, A., Inoue, S. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2017. Lecture Notes in Computer Science(), vol 10571. Springer, Cham. https://doi.org/10.1007/978-3-319-67422-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67422-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67421-6

  • Online ISBN: 978-3-319-67422-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics