Abstract
The pan-integrals are based on a special type of commutative isotonic semiring \((\overline{R}_+, \oplus , \otimes )\) and the monotone measures \(\mu \) defined on a measurable space \((X,\mathcal {A})\). On the other hand, based on a pan-addition \(\oplus \) each monotone measure \(\mu \) generates a new monotone measure \(\mu _{\oplus }\) which is called the \(\oplus \)-optimal measure (to \(\mu \) and \(\oplus \)). Such monotone measure \(\mu _{\oplus }\) is greater than or equal to \(\mu \) and it is super-\(\oplus \)-additive (i.e., \(\mu _{\oplus }(A\cup B) \ge \mu _{\oplus }(A)\oplus \mu _{\oplus }(B)\) whenever \(A,B\in \mathcal {A}\), \(A\cap B=\emptyset \)). In this note, we shall present some new properties of the pan-integral. It is shown that the pan-integral with respect to \(\mu \) coincides with the pan-integral with respect to \(\mu _{\oplus }\) on a given pan-space \((X,\mathcal {A},\mu ,\overline{R}_+,\oplus ,\otimes )\). As a special case of this result, we show that the \(\oplus \)-optimal measure derived from \(\mu \) is totally balanced for the pan-integrals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap, E. (ed.) Handbook of Measure Theory, vol. II, pp. 1329–1379. Elsevier, Amsterdam (2002)
Benvenuti, P., Mesiar, R.: Pseudo-arithmetical operations as a basis for the general measure and integration theory. Inf. Sci. 160, 1–11 (2004)
Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1954)
Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals: Theory and Applications. Studies in Fuzziness and Soft Computing, vol. 40. Springer, Heidelberg (2000)
Ichihashi, H., Tanaka, M., Asai, K.: Fuzzy integrals based on pseudo-additions and multiplications. J. Math. Anal. Appl. 130, 354–364 (1988)
Klement, E.P., Li, J., Mesiar, R., Pap, E.: Integrals based on monotone set functions. Fuzzy Sets Syst. 281, 88–102 (2015)
Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)
Lehrer, E.: A new integral for capacities. Econ. Theor. 39, 157–176 (2009)
Lehrer, E., Teper, R.: The concave integral over large spaces. Fuzzy Sets Syst. 159, 2130–2144 (2008)
Li, J., Mesiar, R., Struk, P.: Pseudo-optimal measures. Inf. Sci. 180, 4015–4021 (2010)
Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)
Mesiar, R., Li, J., Pap, E.: Pseudo-concave integrals. In: Li, S., Wang, X., Okazaki, Y., Kawabe, J., Murofushi, T., Guan, L. (eds.) NLMUA2011. Advances in Intelligent and Soft Computing, vol. 100, pp. 43–49. Springer, Heidelberg (2011)
Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reason. 54, 357–364 (2013)
Mesiar, R., Rybárik, J.: Pan-operaions structure. Fuzzy Sets Syst. 74, 365–369 (1995)
Mesiar, R., Stupnaňová, A.: Decomposition integrals. Int. J. Approx. Reason. 54, 1252–1259 (2013)
Ouyang, Y., Li, J.: An equivalent definition of pan-integral. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS, vol. 9880, pp. 107–113. Springer, Cham (2016). doi:10.1007/978-3-319-45656-0_9
Pap, E.: Null-Additive Set Functions. Kluwer, Dordrecht (1995)
Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)
Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Dissertation, Takyo Institute of Technology (1974)
Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)
Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, New York (2009)
Wang, Z., Wang, W., Klir, G.J.: Pan-integrals with respect to imprecise probabilities. Int. J. Gen Syst 25, 229–243 (1996)
Yang, Q.: The pan-integral on fuzzy measure space. Fuzzy Math. 3, 107–114 (1985). (in Chinese)
Zhang, Q., Mesiar, R., Li, J., Struk, P.: Generalized Lebesgue integral. Int. J. Approx. Reason. 52, 427–443 (2011)
Acknowledgements
This research was partially supported by the National Natural Science Foundation of China (Grant No. 11371332 and No. 11571106) and the NSF of Zhejiang Province (No. LY15A010013).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Li, J., Ouyang, Y., Yu, M. (2017). Pan-Integrals Based on Optimal Measures. In: Torra, V., Narukawa, Y., Honda, A., Inoue, S. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2017. Lecture Notes in Computer Science(), vol 10571. Springer, Cham. https://doi.org/10.1007/978-3-319-67422-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-67422-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67421-6
Online ISBN: 978-3-319-67422-3
eBook Packages: Computer ScienceComputer Science (R0)